



Guildwood GO Station  
25200

# FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

**4105 Kingston Road  
Scarborough, ON  
M1E 2M3**

## Disclaimer

*This Report represents the work of LEA Consulting Ltd (“LEA”). This Report may not be relied upon for detailed implementation, or any other purpose not specifically identified within this Report. This Document may be relied upon by Fotenn for the purposes identified in this report. This Document is confidential and prepared solely for the use of Fotenn and affiliates (the “Intended Users”). Neither LEA, its sub-consultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any party other than Fotenn for any information or representation herein.*

## TABLE OF CONTENTS

|       |                                                       |    |
|-------|-------------------------------------------------------|----|
| 1     | Introduction .....                                    | 1  |
| 1.1   | <i>Scope</i> .....                                    | 1  |
| 1.2   | <i>Site Location</i> .....                            | 1  |
| 1.3   | <i>Pre-Development Conditions</i> .....               | 3  |
| 1.4   | <i>Existing Utilities</i> .....                       | 3  |
| 1.5   | <i>Post-Development Conditions</i> .....              | 5  |
| 2     | Servicing .....                                       | 7  |
| 2.1   | <i>Water Supply</i> .....                             | 7  |
| 2.2   | <i>Sanitary</i> .....                                 | 10 |
| 2.3   | <i>Stormwater Management</i> .....                    | 13 |
| 2.4   | <i>Pre-Development Conditions</i> .....               | 13 |
| 2.4.1 | General.....                                          | 13 |
| 2.4.2 | Rainfall Information .....                            | 14 |
| 2.4.3 | Peak Flow Rates Under Existing Conditions.....        | 16 |
| 2.4.4 | Allowable Flow Rate.....                              | 16 |
| 2.5   | <i>Post-Development Conditions</i> .....              | 16 |
| 2.5.1 | General.....                                          | 16 |
| 2.5.2 | Peak Flow Rates Under Proposed Conditions.....        | 19 |
| 2.5.3 | Impact on Water Environment .....                     | 19 |
| 2.5.4 | Water Balance Requirements .....                      | 20 |
| 2.5.5 | Water Quantity Control .....                          | 20 |
| 2.5.6 | Water Quality Control.....                            | 21 |
| 3     | Erosion and Sediment Control During Construction..... | 23 |
| 4     | Groundwater And Site Dewatering.....                  | 23 |
| 5     | Conclusion.....                                       | 23 |

## LIST OF TABLES

|                                                                     |    |
|---------------------------------------------------------------------|----|
| Table 1: Domestic Water & Fire Demands.....                         | 7  |
| Table 2: Sanitary Flow Rate.....                                    | 10 |
| Table 3: Areas of Existing Sub-Catchment .....                      | 13 |
| Table 4: Values of a and c Parameters for the City of Toronto ..... | 16 |
| Table 5: Pre-Development Flow Rates (L/s) .....                     | 16 |
| Table 6: Post-Development Peak Flow Rates (L/s).....                | 19 |
| Table 7: Key Hydrologic Parameters.....                             | 19 |
| Table 8: Required Stormwater Storage Volumes for Whole Site .....   | 20 |

## LIST OF FIGURES

- FIGURE 1 SITE LOCATION
- FIGURE 2 TOPOGRAPHIC SURVEY PLAN
- FIGURE 3 SITE PLAN
- FIGURE 4 PROPOSED CONCEPTUAL WATER SERVICING PLAN
- FIGURE 5 PROPOSED CONCEPTUAL SANITARY SERVICING PLAN
- FIGURE 6 PRE-DEVELOPMENT DRAINAGE PLAN
- FIGURE 7 POST-DEVELOPMENT DRAINAGE PLAN
- FIGURE 8 PROPOSED CONCEPTUAL STORM SERVICING PLAN
- FIGURE 9 PROPOSED CONCEPTUAL GRADING PLAN

## APPENDICES

|            |                                                         |
|------------|---------------------------------------------------------|
| APPENDIX A | BACKGROUND INFORMATION & PROPOSED SITE PLAN             |
| APPENDIX B | WATER DEMAND CALCULATIONS AND HYDRANT FLOW TEST RESULTS |
| APPENDIX C | SANITARY FLOW CALCULATIONS                              |
| APPENDIX D | SWM CALCULATIONS                                        |

# 1 INTRODUCTION

## 1.1 SCOPE

LEA Consulting Ltd. has been retained by Fotenn to provide engineering services for the redevelopment of the 4105 Kingston Road site, which will house the Transit Oriented Community (TOC) for the Guildwood GO Station. Based on the architectural site plan, the scope of site work includes the development of a dedicated park area, a bike parking facility, GO Station Plaza, residential towers, residential/mixed-used podiums, additional greenspace, and a connection into the Timbertrin Development located north of the study area.

This report shall:

- Review existing conditions and background documents.
- Review and propose the design intent for the water supply, storm, storm water management and sanitary servicing requirement of the proposed development.

## 1.2 SITE LOCATION

The project site is located at 4105 Kingston Road Scarborough in the City of Toronto, ON. The proposed redevelopment will take place over the existing parking lot located within the study area with subject area of 2.91 Hectares. The project site is bounded by existing residential units to the east, Kingston Road to the north and west, and the Canadian National Railway GO Lakeshore East line to the south. Based on the background desktop research from the Toronto and Region Conservation Authority (TRCA) online regulated area maps, the project site is located outside the regulated limits of TRCA. The site access is currently accessed via Kingston Road.

**Figure 1** shows the Project Site location.



LEGEND:



SITE LOCATION



TOC ACCESS CORRIDOR

Owner/Client:

FOTENN PLANNING & DESIGN

Title:

Guildwood GO - TOC  
Communities Program

SITE LOCATION



Drawn By: E.A.

Checked By: G.S.

Scale: N.T.S.

Date: OCTOBER 2025

Project No.: 25200

Figure No.: 1

## 1.3 PRE-DEVELOPMENT CONDITIONS

Based on the review of the survey, the project site is currently occupied by an asphalt parking lot area which drains from northwest to southeast and services the Guildwood GO station. Access to the existing site is to the north via Kingston Road. The pre-development conditions are shown in **Figure 2**.

## 1.4 EXISTING UTILITIES

### 1.4.1 Surrounding Utilities

Based on the Toronto Water Atlas and the Toronto Sewer Atlas, the project site is surrounded by the following wet utilities located along Kingston Road, Payzac Avenue, and the Canadian National Railway:

- ▶ 300mm dia. concrete storm sewer flowing north east along Kingston Road
- ▶ 375mm dia. concrete storm sewer flowing north east along Kingston Road
- ▶ 900mm dia. concrete storm sewer flowing north east along Kingston Road
- ▶ 975mm dia. concrete storm sewer flowing north east along Kingston Road
- ▶ 250mm dia. AC sanitary sewer flowing north east along Kingston Road and continues south along Payzac Avenue
- ▶ 300mm dia. PVC watermain flowing north east along Kingston Road
- ▶ 600mm dia. CI watermain flowing north east along Kingston Road
- ▶ 150mm dia. TRS watermain flowing south along Payzac Avenue
- ▶ 9 City of Toronto Hydrants located along Kingston Road
- ▶ 2 City of Toronto Hydrants located along Payzac Avenue

### 1.4.2 Future Utilities North of the Study Area

Based on the Servicing Plan from Counterpoint Engineering, dated March 2021, the project site will be serviced by the following wet services located within the site which will connect into the residential development proposed by Tmbertin (Guildwood) GP Inc.:

- ▶ 525mm dia. concrete storm sewer flowing north along Public ROW "A"
- ▶ 450mm dia. concrete sanitary sewer flowing north along Public ROW "A"
- ▶ 300mm dia. watermain located along along Public ROW "A", then connecting into the 300mm dia. watermain located along Public ROW "D".
- ▶ 300mm dia. watermain located along along Public ROW "C", then connecting into the 300mm dia. watermain located along Public ROW "D".
- ▶ 675mm dia. concrete storm sewer flowing north along Public ROW "C".

## 1.5 POST-DEVELOPMENT CONDITIONS

The project involves the construction of 6 residential towers within 3 blocks:

- Block A
- Block B
- Block C

Block A consists of Buildings A1, A2, and a podium area, which are 40, 35, and 7 stories respectively, and combined have 710 units. Block B consists of Buildings B1, B2, and a podium area, where B1 and B2 are 60 stories and the podium is 7 stories. They have a combined unit count of 1,208. Block C consists of Buildings C1, C2, and a podium. Buildings C1 and C2 are both 30 stories, and the podium is 7 stories. They contain 616 units combined. The new residential developments will have access to a bike parking area and the Guildwood GO Station. Furthermore, the POPS area is 2,830 m<sup>2</sup> and will include the Station Plaza (1,000 m<sup>2</sup>) and Livingston Connection (1,830 m<sup>2</sup>). A dedicated 1,750 m<sup>2</sup> park area will also be implemented. The post-development conditions are illustrated in **Figure 3**.



**LEGEND:**

— TOC SITE

····· TOC ACCESS CORRIDOR

Owner/Client:

**FOTENN PLANNING & DESIGN**

Title:

Guildwood GO - TOC  
Communities Program

**TOPOGRAPHIC SURVEY  
PLAN**



Drawn By: E.A.

Checked By: G.S.

Scale:

Date: OCTOBER 2025

Project No.: 25200

Figure No.: 2

## 2 SERVICING

The purpose of this section is to outline the servicing of the subject site from a civil engineering perspective.

### 2.1 WATER SUPPLY

The domestic water demands for the proposed site are based on the following City of Toronto, *Design Criteria for Sewers and Watermains, January 2021*:

- ▶ Water demand rate of 190 L/Capita/day for residential multi-unit, 250 L/capita/day for commercial;
- ▶ Peaking Factor for apartments 2.50 (Peak hour) & 1.30 (Maximum Day) – for commercial 1.20 (Peak Hour) and 1.1 (Maximum Day);
- ▶ Population density: 1.4 persons/bed for 1-bed; 1.4 persons/bed for 1-bed +den; 2.1 persons/bed for 2-bed; 2.1 persons/bed for 2-bed +den; 3.1 persons/bed for 3-bed.

Existing fire and water demand calculations have been completed for the existing station building. It is assumed that existing station building is designed to be non-combustible, further coordination is required to confirm type of construction for existing buildings. Domestic water demands are based on the municipal design criteria and the fire flow demand calculations are in accordance with the Fire Underwriters Survey (FUS 2020). It is assumed the type of construction for the proposed residential buildings is to be non-combustible and will have an adequately designed system conforming to NFPA 13 and other NFPA sprinkler standards. The domestic water and fire demands are summarized in **Table 1** below. Refer **Appendix B** for detailed water and fire calculations.

Table 1: Domestic Water & Fire Demands

| Building     | Peak Hour Demand (L/s) | Maximum Day Demand (L/s) | Fire Demand (L/s) | Max. Day Domestic Demand + Fire Flow=Total Demand (L/s) |
|--------------|------------------------|--------------------------|-------------------|---------------------------------------------------------|
| Ex. Building | 0.02                   | 0.02                     | 50.0              | 50.02                                                   |
| Building A1  | 3.90                   | 2.07                     | 100.00            | 102.0                                                   |
| Building A2  | 3.44                   | 1.83                     | 83.33             | 85.1                                                    |
| Building B1  | 6.57                   | 3.44                     | 116.67            | 119.6                                                   |
| Building B2  | 5.71                   | 3.00                     | 116.67            | 119.6                                                   |
| Building C1  | 2.96                   | 1.56                     | 100.00            | 101.6                                                   |
| Building C2  | 3.28                   | 1.73                     | 100.00            | 101.6                                                   |

Proposed development will be serviced by 300mm watermain stub that Timbertrin Development (located north of the study area) proposed for our development. Main connection for 300mm watermain due north is via existing 300mm watermain located on Kingston Road. Proposed development is to be serviced by 300mm Watermain running along the private ROW, Public ROW "C" Extension, Public ROW "E" and Public ROW "A"

Extension. These 300mm watermain lines will further service all three blocks and the park for water service connections.

The new water service connections for the proposed building are described as follows:

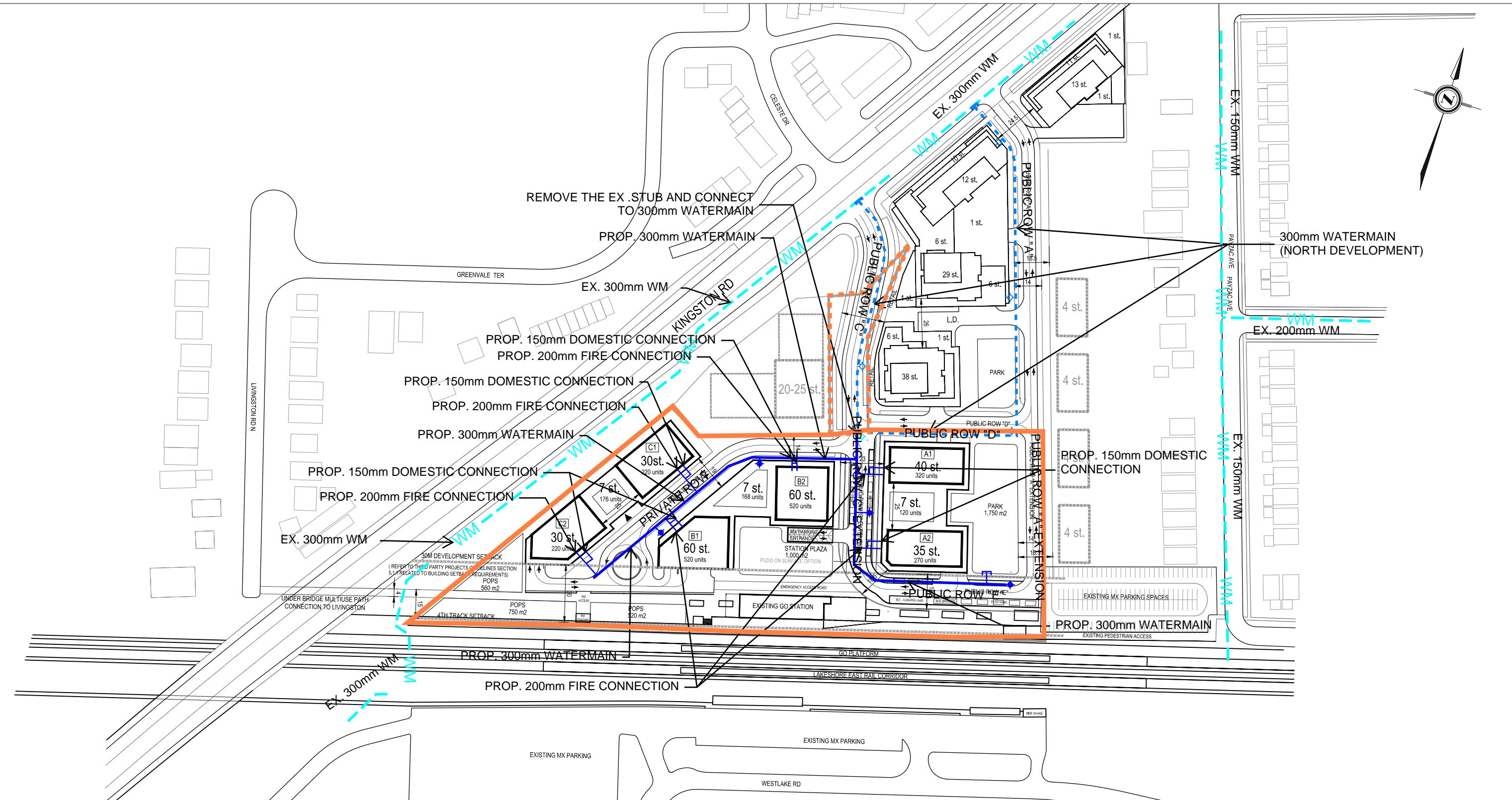
► Domestic Water Service:

- All 6 proposed building in Block A, B and C will be serviced by a new 150mm dia. PVC domestic water service connection and will be connected to the proposed 200mm dia. fire protection water service with a cut-in Tee.

► Fire Protection Service:

- A new 200mm dia. PVC fire protection service will be installed to service all 6 proposed building in Block A, B and C and will be connected to the proposed 300mm watermain on the private ROW, Public ROW "C" Extension, Public ROW "E" and Public ROW "A" Extension with tapping sleeve and valve per City standard T-1104.02-3.

► Proposed Park area is provided with 100mm water service connection.


The size of the water service lines will be coordinated and finalized with the mechanical consultant at detailed design stage.

Refer to **Figure 4** for the conceptual water servicing connection.

To evaluate the adequacy of the existing watermain located on Guildwood Parkway Road, hydrant test was conducted by Bruce Fire Engineering on April 15, 2025. Hydrant test was conducted on fire hydrants located on Kingston Road. Refer to Appendix B for Hydrant flow test results and location of the existing hydrants on Kingston Road. As per proposed hydrant Tests result, watermain adequacy sheet (**Sheet C03 in Appendix B**) is prepared to portray there is enough capacity in 300mm existing watermain on Kingston Road to service proposed development. As per Hydrant testing, static pressure is 60.0 with residual pressure of 58 psi and 56 psi the flows are 844 gpm and 1265.6 gpm. Calculated flow at 20 psi is 4386 gpm. Thus, with highest water demand out of 6 proposed building and existing station building is 119.6 for buildings B and based on hydrant testing, the residual pressure for required water demand of 119.65 L/s is 51.5 psi, which is higher than minimum requirement of 20 psi.

Building code requirements stipulate that each building be serviced by a fire hydrant that is located no more than 45m away from the building's siamese connection. Four new hydrants have been proposed throughout the proposed development. 2 hydrants are proposed on private road which will service Block B and C. Block A, existing station building and Parkland will be serviced by 2 proposed hydrants located along the private Public ROW "C" Extension and Public ROW "E".

The on-site watermains located in the proposed buildings will be designed by the Site Mechanical Engineer. In accordance with City Standards, a water meter and a backflow preventer valve will be installed on the domestic line within the mechanical room. A detector assembly will be installed on the fire service line in compliance with the OBC. The meter room will need to be accessible to the city and provide remote read-out locations for the city's use in reading the meters. Details of the room's layout will be provided by the Mechanical Engineer at the detailed design stage.



#### LEGEND:

- TOC SITE** (Solid Orange Line)
- TOC ACCESS CORRIDOR** (Dotted Orange Line)
- PROP. WATERMAIN** (Solid Blue Line)
- PROP. FIRE / DOMESTIC CONNECTION** (Solid Blue Line)
- NORTH DEVELOPMENT PROP. WATERMAIN** (Dashed Cyan Line)
- EX. WATERMAIN** (Dashed Cyan Line)
- NORTH DEVELOPMENT PROP. HYDRANT** (Blue Circle with Cross)
- PROP. HYDRANT** (Blue Circle with Cross)

Owner/Client:

FOTENN PLANNING & DESIGN

Title:

Guildwood GO - TOC  
Communities Program

SITE SERVICING PLAN  
(WATER)



Drawn By: E.A.

Checked By: G.S.

Scale:

Date: October 2025

Project No.: 25200

Figure No.: 4

## 2.2 SANITARY

The sanitary demands for the proposed site are based on the following are based on the following City of Toronto, *Design Criteria for Sewers and Watermains, January 2021*:

- ▶ Sanitary demand rate of 240 L/capita/day (Residential) & 250 L/capita/day (Commercial) for sanitary service size design.
- ▶ Infiltration Allowance of 0.26 L/s/ha;
- ▶ Peaking Factor based on the Harmon Equation; and
- ▶ Population density: 1.4 persons/bed for 1-bed; 1.4 persons/bed for 1-bed +den; 2.1 persons/bed for 2-bed; 2.1 persons/bed for 2-bed +den; 3.1 persons/bed for 3-bed.

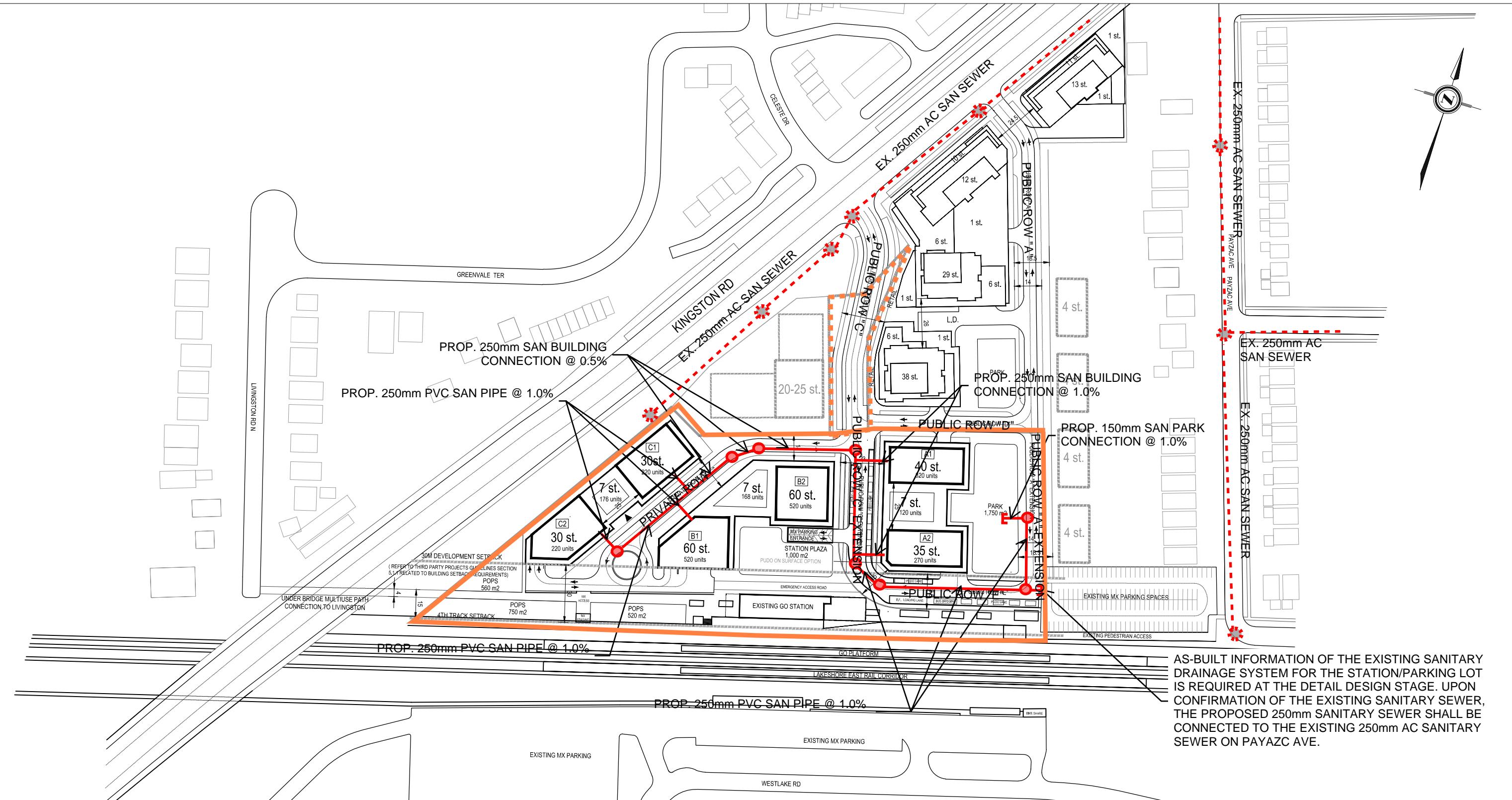
The existing sanitary demand was calculated as per current GFA of existing station building. Proposed development sanitary demand was calculated as per proposed number of units for all three blocks and the municipal design criteria was applied to calculate the flow and will be coordinated with the mechanical consultant at the design stage. The sanitary design flows are estimated in **Appendix C** and summarized in **Table 2**.

Table 2: Sanitary Flow Rate

| Existing Flow Rate<br>from Existing<br>Building<br>(L/s) | Proposed Flow Rate<br>from Proposed buildings<br>in Block A, B & C.<br>(L/s) |
|----------------------------------------------------------|------------------------------------------------------------------------------|
| 0.10                                                     | 43.05                                                                        |

As Per city of Toronto Sewer Atlas maps, there is a 250mm dia. sanitary sewer flowing in a north direction along Payzac Ave. Additionally there is an existing 250mm dia sanitary sewer on Kingston road which is flowing towards Payzac Ave. Consequently, as-built information about the existing sanitary drainage system for the station/parking lot is required at the detail design. Upon confirmation of the existing sanitary sewer, the proposed 250mm sanitary sewer shall be connected to the existing 250mm AC sanitary sewer on Payzac Ave.

The following sanitary service connection is proposed to service the proposed development:


A new 250mm dia. PVC sanitary sewer is proposed along private and public road E to service Block A, B, C, existing station building and proposed parkland. For each building a 200mm sanitary service line is proposed to service the residential building along with 150mm stub for parkland. Upon confirmation of existing sanitary outlet for the existing station building, proposed 250mm sanitary sewer will connect to Payzac ave. The feasibility of using a gravity sewer system will be confirmed upon receipt and review of as-built drawings for the existing station building, associated parking lot, and sanitary sewers located on Payzac Avenue.

The actual flow velocity of the 250mm dia. PVC sanitary service at 1.0% is 1.21m/s, which is greater than the minimum required velocity of 0.6m/s as per the City of Toronto Design Criteria for Sewers and Watermains.

It should be noted that a downstream capacity analysis of the existing 250 mm sanitary sewer on Payzac Avenue to be conducted during the detailed design stage. This analysis is intended to confirm whether the proposed increase in sanitary flow—from the existing to the proposed condition—can be accommodated by the downstream sewer without significantly increasing the hydraulic grade line.

The size of the sanitary service line will be coordinated and finalized with the mechanical consultant at detailed design stage.

Refer to **Figure 5** for the conceptual sanitary servicing connection.



|                                                                                                                                                                        |                                                                                       |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------|
| <b>Owner/Client:</b><br><b>FOTENN PLANNING &amp; DESIGN</b><br><b>Title:</b><br><b>Guildwood GO - TOC Communities Program</b><br><b>SITE SERVICING PLAN (SANITARY)</b> |  |                    |
|                                                                                                                                                                        | Drawn By: E.A.                                                                        | Checked By: G.S.   |
|                                                                                                                                                                        | Scale:                                                                                | Date: October 2025 |
|                                                                                                                                                                        | Project No.: 25200                                                                    | Figure No.: 5      |

## 2.3 STORMWATER MANAGEMENT

The City of Toronto has issued the Wet Weather Flow Management Guidelines (WWFMG, November 2006) to provide direction on how to manage rainfall and runoff inside the City's jurisdiction. A summary of the stormwater management criteria applicable to this project is as follows:

- ▶ **Water Balance:** The WWFMG requires a site to retain stormwater on-site, to the extent practicable, to achieve the same level of annual volume of overland runoff allowable from the development site under pre-development conditions. Typically, the minimum on-site runoff retention will require the site to retain all runoff from a 5mm storm event through infiltration, evapotranspiration or rainwater reuse.
- ▶ **Water Quality:** Under the Wet Weather Flow Management Guidelines, the site is required to provide a long-term removal of 80% of total suspended solids (TSS) on an average annual basis.
- ▶ **Erosion Control:** As indicated in WWFMG, for large redevelopment sites > 2.0 ha, for all other watersheds other than Rouge River watershed, there are two options for erosion control. Option 1 is to complete an Erosion Analysis Report to determine the erosion control criteria for the site. Option 2 is to retain runoff from a 25mm design rainfall event and release over a minimum of 24 hours.
- ▶ **Water Quantity Control and Discharge to Municipal Infrastructure:** Runoff from the 2-year to 100-year design storms must not exceed the peak runoff rate from the site under pre-development conditions. The allowable release rate to the municipal storm sewer system from the development site is the 2-year pre-development flow rate based on a maximum runoff coefficient value of 0.50.

## 2.4 PRE-DEVELOPMENT CONDITIONS

### 2.4.1 General

Based on the review of the survey, the project site is currently occupied by the existing 1-storey station building and surrounded by parking lot/driveway and landscape areas. The total site drainage area is 2.94 ha. For the purpose of this SWM analysis, the development site is divided into four (1) sub-catchment area based on the existing property boundary and topography survey, drainage pattern and post-development condition, i.e.

- ▶ Sub-Catchment EC1: includes the 1-storey exiting station building and parking lots with an area of 2.94 ha. This sub-catchment is draining west to east towards Payzac.

Sub-catchment areas and runoff coefficient are summarized below in **Table 3**. Refer to **Appendix D** for land-use areas and runoff coefficient calculations.

Table 3: Areas of Existing Sub-Catchment

| Sub-catchment ID | Description                             | Catchment Area (m <sup>2</sup> ) | Actual Runoff Coefficient | Runoff Coefficient as per City's Criteria | Outlet    |
|------------------|-----------------------------------------|----------------------------------|---------------------------|-------------------------------------------|-----------|
| EC1              | Existing station building & parking lot | 29,143.6                         | 0.84                      | 0.50                                      | Northeast |

Based on our review of topographic survey the site is draining west to east towards Payzac Ave but however as built information is required of the existing station building and the parking lot area to determine outlet points for onsite storm sewers. Drainage area boundaries, overland flow routes, grading and land use details under existing conditions are illustrated in **Figure 6**.

#### 2.4.2 Rainfall Information

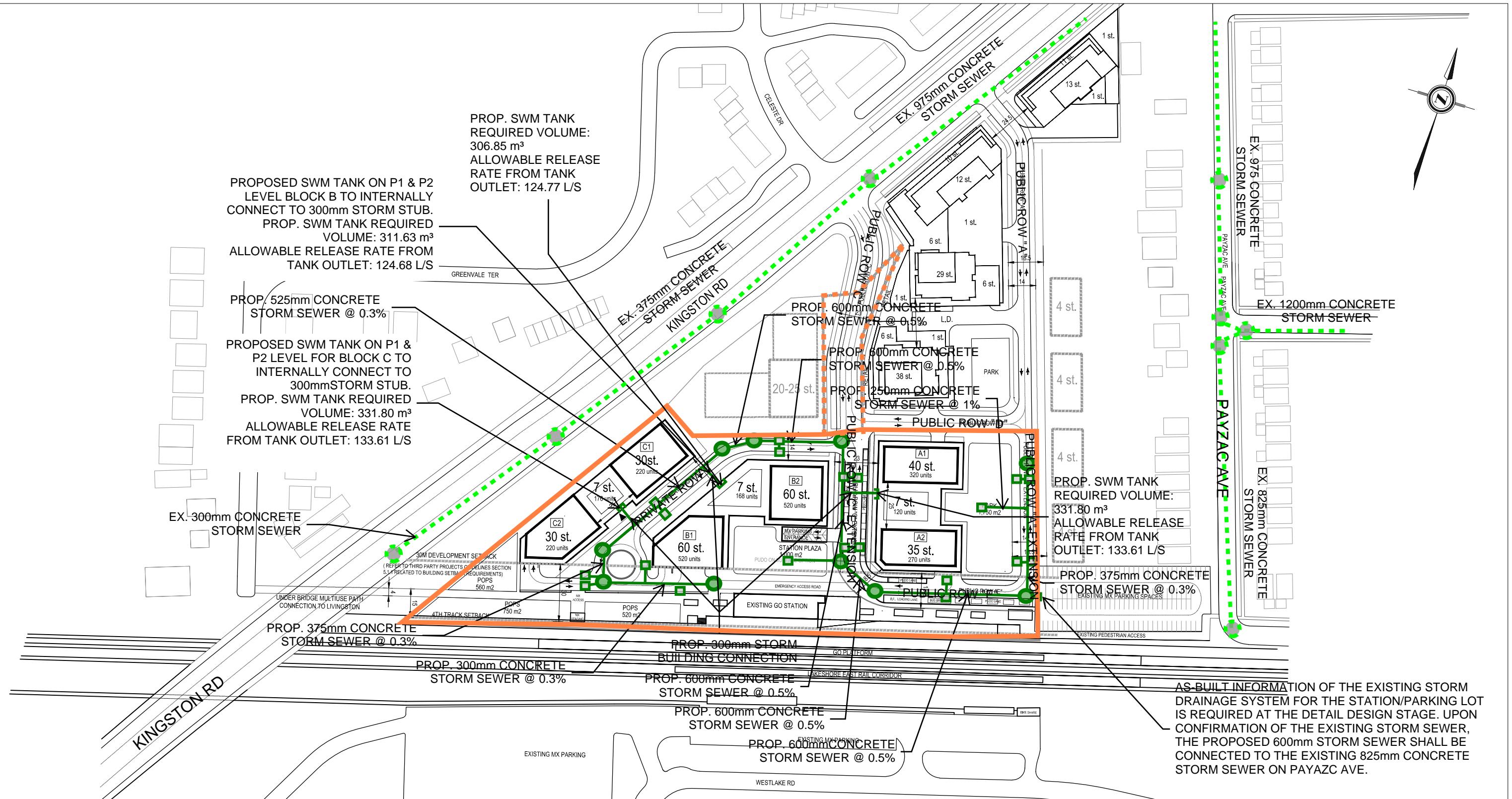
The rainfall runoff and intensity under proposed conditions are calculated using the following equations:

**Rational Formula:**  $Q = 2.78CIA$  (L/s)

Where: C: runoff coefficient

I: rainfall intensity (mm/hr)

A: drainage area (ha)


**IDF Curve Equation:**  $I = aT^c$  (for the City of Toronto)

Where: I: rainfall intensity (mm/hr)

T: time of concentration (hour)

a, c: parameters

The parameters (a and c) recommended for use in the City of Toronto are defined in section 3.1 of the WWFM Guidelines and are summarized in **Table 4**.



#### LEGEND:

- TOC SITE
- TOC ACCESS CORRIDOR
- EX. STORM SEWER
- PROPOSED STORM SEWER
- PROPOSED STORM MANHOLE
- PROPOSED CATCH BASIN
- EX. MANHOLE

Owner/Client:

FOTENN PLANNING & DESIGN

Title:

Guildwood GO - TOC  
Communities Program

SITE SERVICING PLAN  
(STORM)



Drawn By: E.A.

Checked By: G.S.

Scale:

Date: October 2025

Project No.: 25200

Figure No.: 6

Table 4: Values of a and c Parameters for the City of Toronto

| Return Period (Year) | 2     | 5     | 10    | 25    | 50    | 100   |
|----------------------|-------|-------|-------|-------|-------|-------|
| a                    | 21.8  | 32    | 38.7  | 45.2  | 53.5  | 59.7  |
| c                    | -0.78 | -0.79 | -0.80 | -0.80 | -0.80 | -0.80 |

An initial time of concentration, T, of 10 minutes (or 0.167 hours) is recommended in the WWFMG document.

#### 2.4.3 Peak Flow Rates Under Existing Conditions

Based on the existing site condition and rainfall parameters, the Rational Method is adopted to calculate peak flows at different design storm events.

The calculated peak flow rates for the one (1) sub-catchment areas in the pre-development condition are summarized below in **Table 5**. Detailed calculations are provided in **Appendix D**.

Table 5: Pre-Development Flow Rates (L/s)

| Sub-catchment ID | Description                              | Flow Rate (L/s) |        |        |        |        |         |
|------------------|------------------------------------------|-----------------|--------|--------|--------|--------|---------|
|                  |                                          | 2yr             | 5yr    | 10yr   | 25yr   | 50yr   | 100yr   |
| EC1              | Existing station building & parking lots | 357.25          | 533.89 | 657.34 | 767.75 | 908.73 | 1014.04 |

#### 2.4.4 Allowable Flow Rate

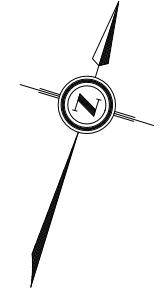
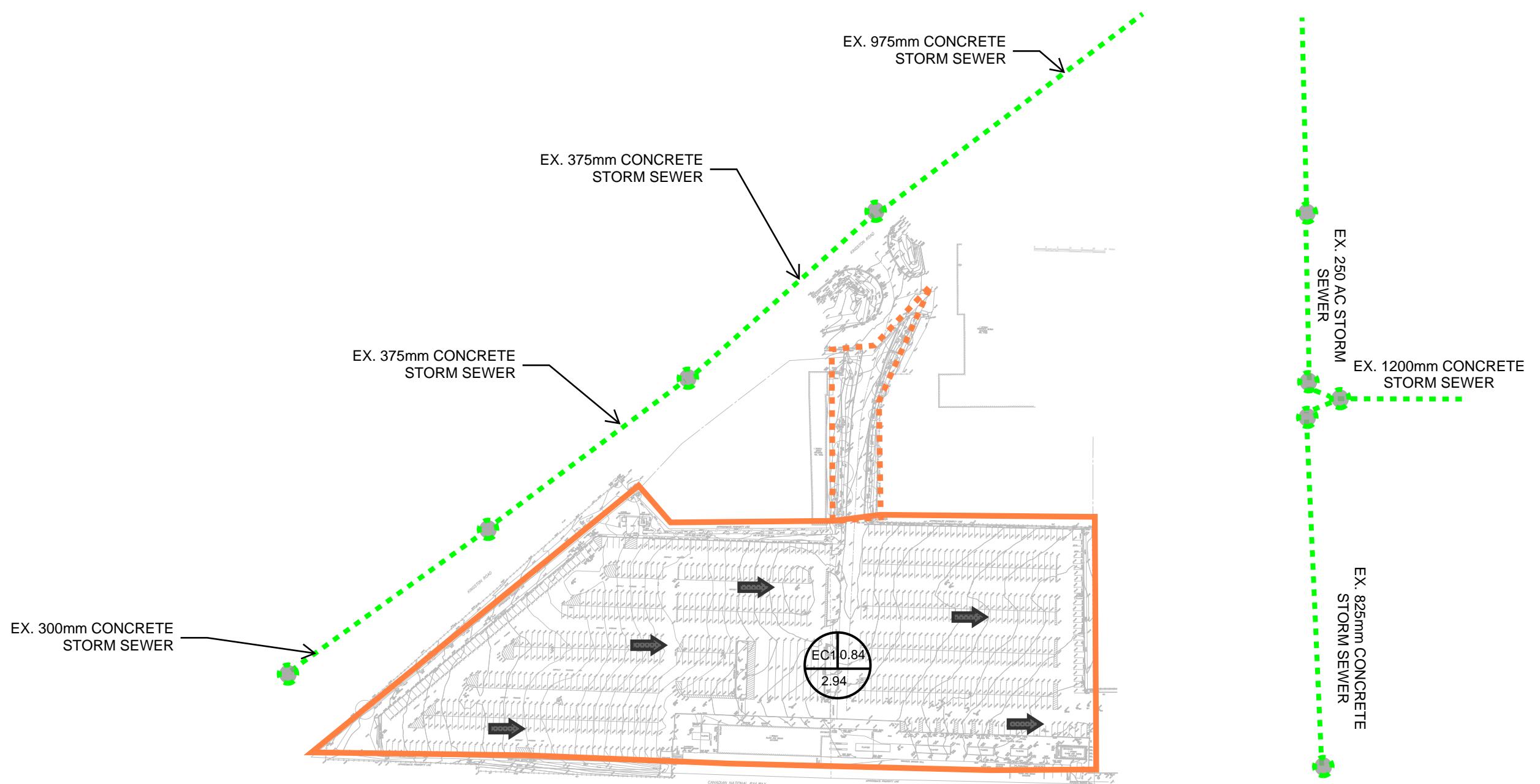
Relevant policies from the WWFMG restrict flow rates on this site to the allowable flow rates for discharge to municipal sewers. Below is the allowable flow rate for the whole site based on the site conditions and drainage patterns.

**According** to the WWFMG, Section 2.2.3.8, the allowable release rates from the existing building and paved area (parking lots) to the municipal storm sewer on Payzac Ave (To be confirmed in the detail design stage upon receiving as-built information of the site) is **357.25 L/s** based on the 2-year pre-development flow rate calculated with a runoff coefficient value of 0.50 (max. allowable by city of Toronto).

This allowable release rate has been used in the storage calculations and as the discharge rates to City sewer.

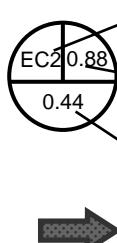
### 2.5 POST-DEVELOPMENT CONDITIONS

#### 2.5.1 General



The project involves the construction of 6 high rise buildings in block A, b & C, along with proposed parkland and private and public roads. Based on the architectural site plan, the existing station building will remain proposed development will mainly take place north of existing station building within the existing parking lot area.

To maintain the existing drainage pattern under the proposed condition, one (1) sub-catchment areas are defined as following:




**Sub-Catchment PC1:** This catchment area is proposed to have all proposed development that includes 3 blocks (A,B & C) that will have 6 high rise buildings along with propose parkland and private & public roads. The catchment will follow existing overland flow route west to east towards Payzac Ave upon confirmation from as-built information for the site.

**Figure 7** shows the proposed drainage conditions.



## LEGEND:

- TOC SITE
- TOC ACCESS CORRIDOR
- PROP. STORM SEWER
- EX. STORM SEWER
-  EX. MANHOLE



— SUB-CATCHMENT ID

## AVERAGE RUNOFF COEFFICIENT

### — DRAINAGE AREA (ha)

## EX. OVERLAND FLOW ROUTE

Owner/Client:

FOTENN PLANNING & DESIGN

Title

Guildwood GO - TOC  
Communities Program

# PRE-DEVELOPMENT DRAINAGE AREA PLAN



Drawn By: E A

Checked By: G S

---

**Scale:**

---

Date: OCTOBER 2025

Project No.: 25200

Figure No : 7

### 2.5.2 Peak Flow Rates Under Proposed Conditions

Based on the proposed site condition and rainfall parameters, the Rational Method is adopted to calculate peak flows at different design storm events.

The calculated peak flow rates for the one (1) sub-catchment areas under the post-development conditions are summarized in **Table 6**. Detailed calculations are provided in **Appendix D**.

Table 6: Post-Development Peak Flow Rates (L/s)

| Sub-catchment ID | Description                                                                                                                          | Return Period (Year) |        |         |         |         |         |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|---------|---------|---------|---------|
|                  |                                                                                                                                      | 2                    | 5      | 10      | 25      | 50      | 100     |
| PC1              | Outlet eastwards towards<br>Ex. 825mm Storm sewer<br>Payzac Ave<br>(Upon confirmation from<br>As-built information for the<br>site.) | 559.97               | 836.84 | 1030.35 | 1203.40 | 1424.38 | 1589.45 |

### 2.5.3 Impact on Water Environment

Based on the review and analysis for existing and proposed site conditions, **Table 7** summarizes the key hydrologic parameters of the site under the proposed condition.

Table 7: Key Hydrologic Parameters

| Catchment ID | Description                                                | Area (m <sup>2</sup> ) |          | Imperviousness (%) |          | Runoff Coefficient                 |          | 100-year Peak Flow Rate (L/s) |          |
|--------------|------------------------------------------------------------|------------------------|----------|--------------------|----------|------------------------------------|----------|-------------------------------|----------|
|              |                                                            | Pre-Dev                | Post-Dev | Pre-Dev            | Post-Dev | Pre-Dev                            | Post-Dev | Pre-Dev                       | Post-Dev |
| Whole Site   | Discharging Payzac Ave<br>(As-built confirmation required) | 29,144                 | 29144    | 90.4               | 84.0     | 0.84<br>(0.5 Max as city criteria) | 0.80     | 1014.04                       | 1,589.45 |

As shown in **Table 7**, the imperviousness and runoff coefficient of the whole site have decreased under post-development conditions, however, as per city of Toronto's criteria max allowable runoff coefficient is 0.5. Therefore, mitigation measures will be required for the proposed development in accordance with the City's design criteria.

#### 2.5.4 Water Balance Requirements

Based on the water balance criteria of the City of Toronto's WWFM Guideline, the minimum on-site runoff retention requires retaining all runoff from the first 5mm from each rainfall or 50% average annual precipitation through infiltration, evapotranspiration, or rainwater reuse, etc.

Detail calculations of water balance requirement and LID measures will be discussed in the detail design stage.

#### 2.5.5 Water Quantity Control

As noted in Section 2.4.4, the allowable discharge rates to the municipal sewers from the site are equivalent to the peak runoff rate under pre-development conditions during a 2-year design storm event.

Based on post-development conditions of the whole site, the stormwater detention volumes at different storm events are estimated in **Appendix D** and summarized in **Table 8**.

Table 8: Required Stormwater Storage Volumes for Whole Site

| Storm Event | Target Flow<br>(L/s) | Required Detention Volume<br>(m <sup>3</sup> ) |
|-------------|----------------------|------------------------------------------------|
| 2-Year      | 357.25               | 121.63                                         |
| 5-year      |                      | 287.75                                         |
| 10-Year     |                      | 403.86                                         |
| 25-Year     |                      | 507.69                                         |
| 50-Year     |                      | 640.28                                         |
| 100-Year    |                      | 739.32                                         |

In the post-development condition, storm runoff from Blocks A, B, and C will be collected and directed to a shared Stormwater Management (SWM) tank located within the P1 and P2 parking levels. Collection will occur through an internal piping system serving all three blocks.

The total allowable release rate for the entire site is 357.25 L/s, to which each block contributes proportionally:

- Block A provides a storage volume of 254.54 m<sup>3</sup> with a controlled release rate of 98.87 L/s.
- Block B requires a storage volume of 309.85 m<sup>3</sup>, releasing at a rate of 124.77 L/s.
- Block C requires 331.80 m<sup>3</sup> of storage and releases at 133.61 L/s.

The combined provided storage from the three blocks is 887.19 m<sup>3</sup>, which exceeds the required volume of 744.09 m<sup>3</sup> as we are providing 16% additional storage for the entire site area accounting for any variation during the design development stage. The total release rate from all blocks matches the allowable site-wide release rate of 357.25 L/s.

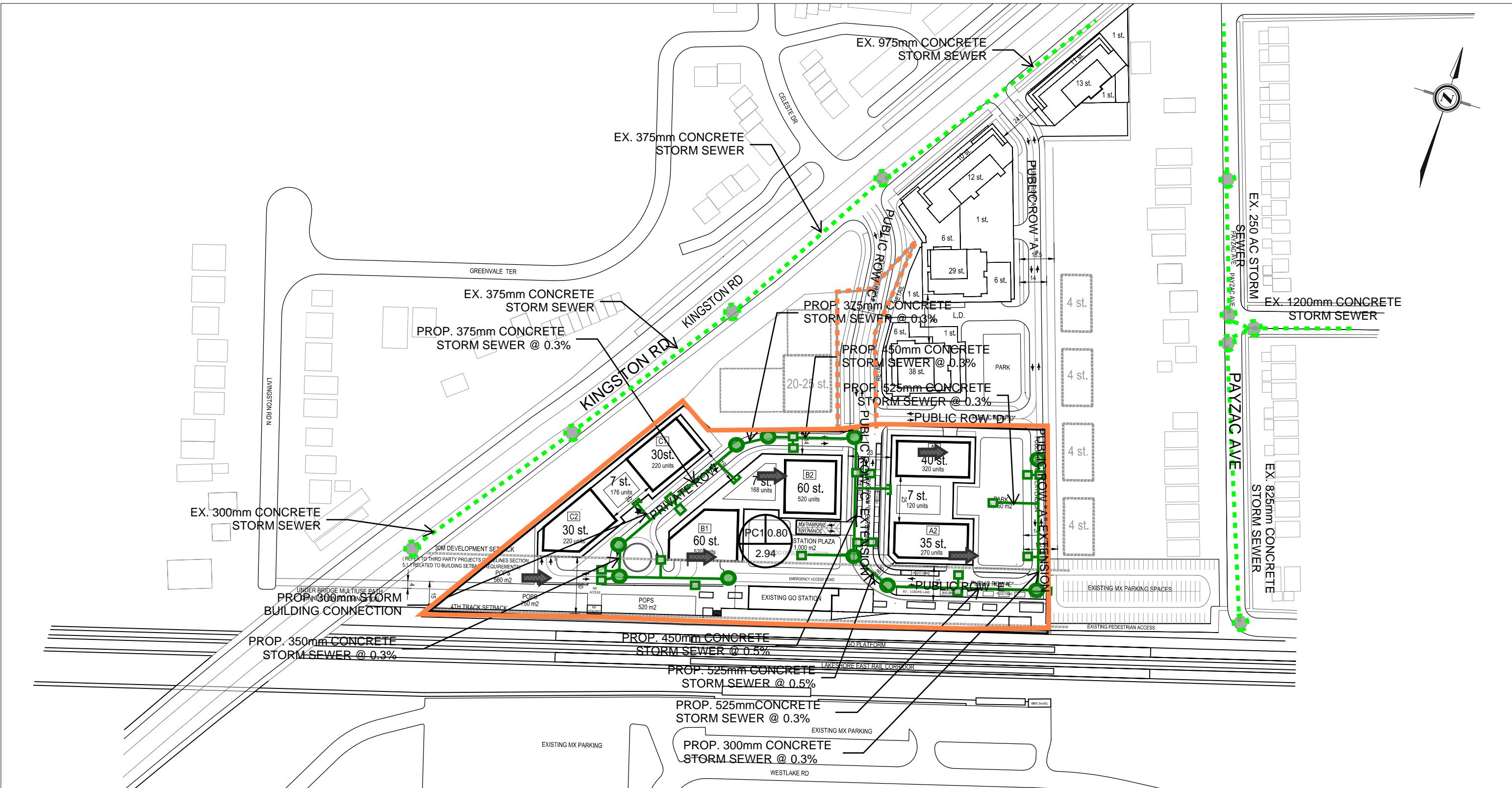
No quantity control measures are proposed for the parkland or the private and public road areas. These areas are considered uncontrolled; however, the design of Blocks A, B, and C includes additional storage capacity to compensate for these uncontrolled runoff contributions.

The storm sewer system has been designed based on a 5-year return period. Detailed hydraulic design sheets and calculations will be provided at the detailed design stage.

An orifice control will be installed at the outlet of each SWM tank so that overall allowable flow rate of 357.25L/s or lower is met. The details of the orifice control will be finalized at a later design stage.

Storm sewers are proposed along both the private and public sections of Road E to collect runoff from Blocks A, B, and C, adjacent park areas, and the existing station building. These sewers are intended to serve as the primary drainage infrastructure for the development.

The feasibility of using a gravity sewer system will be confirmed upon receipt and review of as-built drawings for the existing station building, associated parking lot, and storm sewers located on Payzac Avenue.


Should it be determined that gravity drainage is not viable for certain areas, stormwater flows from the proposed blocks may require pumping to discharge into the proposed storm sewer system along the public and private roads.

Refer to **Figure 8** for the layout of the proposed storm servicing network for the site and **Figure 9** for Site Conceptual Grading Plan.

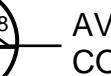
#### 2.5.6 Water Quality Control

As per City standards, stormwater should be treated to the MOECC Enhanced Level protection, and the long-term average removal of 80% TSS is required. Under the post-development condition, the proposed land use for the site includes buildings, surface parking, driveway and paved and landscaped areas. Based on the SWM design criteria, the building rooftop is not subjected to vehicular traffic and the application of sand and de-icing salt constituents, petroleum hydrocarbons, and heavy metals. Therefore, all the stormwater generated from the landscaped area and building rooftop is considered clean. However, stormwater generated from driveways and parking lots is considered 'dirty'. The TSS removal efficiencies for different stormwater management measures are based on the City's WWFM Guidelines.

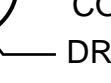
To achieve a TSS removal of 80% for these areas, treatment units such as OGS units will be proposed to be installed within the parking level at downstream of the tank. Sizing details of the treatment unit will be provided at a later design stage.



## LEGEND:


- TOC SITE
- TOC ACCESS CORRIDOR
- PROP. STORM SEWER
- EX. STORM SEWER
- PROP. CATCHMENT BOUNDARY




## PROP. STORM MANHOLE



## — SUB-CATCHMENT II



### **AVERAGE RUNOFF COEFFICIENT**



## COEFFICIENT DRAINAGE AREA (ha)



## PROP. OVERLAND FLOW ROUTE

Owner/Clien

FOTENN PLANNING & DESIGN

-

Guildwood GO - TOC  
Communities Program

## POST DEVELOPMENT DRAINAGE AREA PLAN

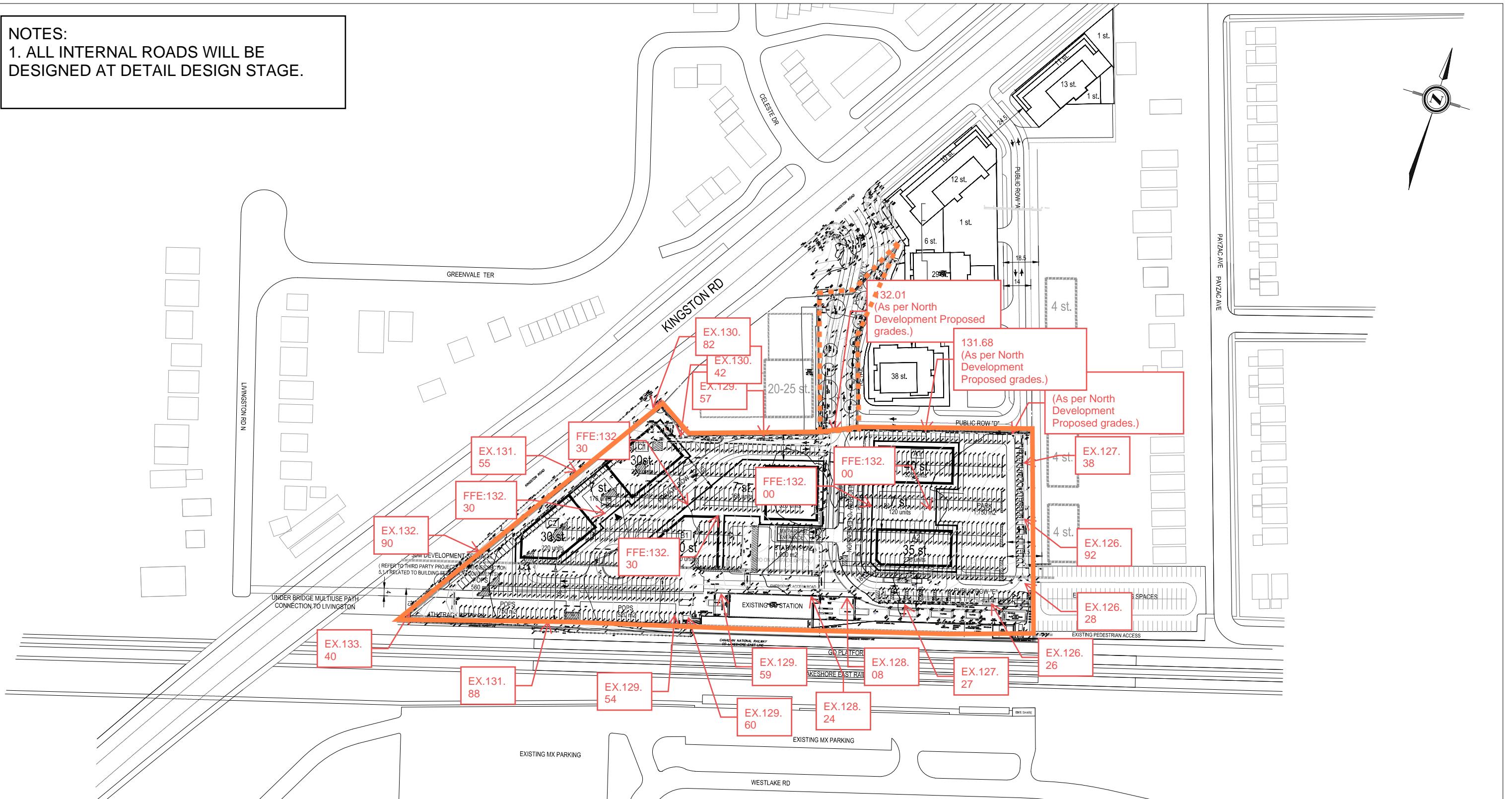


Drawn By: E A

Checked By: G S

---

**Scale:**


---

Date: October 2025

Project No.: 25200

Figure No : 8

**NOTES:**  
1. ALL INTERNAL ROADS WILL BE  
DESIGNED AT DETAIL DESIGN STAGE.



**LEGEND:**

TOC SITE

TOC ACCESS CORRIDOR

EX.  
133.40

EXISTING ELEVATIONS

FFE.  
132.30

FINISHED FLOOR  
ELEVATIONS

Owner/Client:

FOTENN PLANNING & DESIGN

Title:

Guildwood GO - TOC  
Communities Program

CONCEPTUAL GRADING  
PLAN



Drawn By: E.A.

Checked By: G.S.

Scale: 1:20

Date: September 2025

Project No.: 25200

Figure No.: 9

### 3 EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION

During site construction, it is recommended that all erosion and sediment control Best Management Practices (BMPs) shall be constructed and maintained, to a minimum, in accordance with “Ministry of Natural Resources Guidelines on erosion and sediment control for urban construction sites”, “Erosion and Sediment Control Guidelines for Urban Construction (TRCA, 2019)”. In brief, the measures below are proposed to be provided on site during the entire period of construction:

- ▶ Siltation control fence along the perimeter of the construction site before commencement of construction;
- ▶ Sediment control measures to prevent silt entry at all the existing catch basins;
- ▶ Granular mud-mats at all construction egress locations (see mud-mat details);
- ▶ An inspection, maintenance and monitoring per TRCA guideline.

An erosion and sediment control plan will be provided in the next design stage.

### 4 GROUNDWATER AND SITE DEWATERING

The hydrogeological investigation is currently unavailable, and details regarding groundwater conditions and dewatering requirements will be provided during the detailed design stage.

### 5 CONCLUSION

The servicing requirements of the project site have been assessed with respect to the proposed development.

Water Servicing: The proposed development will be serviced by a 300mm watermain stub, provided by Timbertrin Development to the north, which connects to an existing 300mm watermain on Kingston Road. A 300mm watermain will run along both private and public sections of ROW E road to supply water to all three development blocks and the proposed park. Each of the six buildings in Blocks A, B, and C will have a new 150mm PVC domestic water service connected to a 200mm fire protection line via a cut-in Tee. A 200mm PVC fire protection service will also be installed, connecting to the 300mm main using a tapping sleeve and valve, as per City standard T-1104.02-3. The park area will be served by a separate 100mm water service connection.

A hydrant flow test was conducted on April 15, 2025, by Bruce Fire Engineering to assess the adequacy of the existing 300mm watermain on Guildwood Parkway via hydrants on Kingston Road. Test results showed sufficient capacity, with a static pressure of 60 psi, residual pressures of 58 and 56 psi at flows of 844 and 1265.6 gpm, and a calculated flow of 4386 gpm at 20 psi. The highest projected water demand of 119.65 L/s results in a residual pressure of 51.5 psi—well above the 20 psi minimum—confirming the watermain can adequately service the proposed development.

Sanitary Servicing: A new 250mm diameter PVC sanitary sewer is proposed along private and public sections of Road E to service Blocks A, B, and C, the existing station building, and the proposed park. Each block will have a 200mm sanitary service line, with an additional 150mm stub for the parkland. The new 250mm sewer

will connect to Payzac Avenue, pending confirmation of the existing station building's sanitary outlet and review of as-built drawings to verify the feasibility of a gravity system. The proposed sewer meets City of Toronto velocity requirements, with a flow velocity of 1.21 m/s at a 1.0% slope. A downstream capacity analysis of the existing 250mm sewer on Payzac Avenue will be completed during detailed design to ensure it can handle the increased flow without raising the hydraulic grade line significantly.

**Stormwater Servicing & Stormwater Management:**

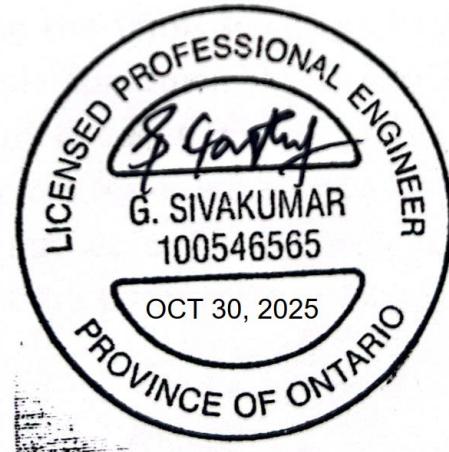
In the post-development condition, storm runoff from Blocks A, B, and C will be directed to a shared Stormwater Management (SWM) tank located within the P1 and P2 parking levels via an internal piping system. Each block contributes proportionally to the total allowable site release rate of 357.25 L/s, with a combined storage volume of 898.91 m<sup>3</sup>—exceeding the required 744.09 m<sup>3</sup>—to also compensate for uncontrolled runoff from parkland and roads. Storm sewers along Road E will collect runoff from the development, and orifice controls at each SWM tank outlet will regulate flow; the system is designed for a 5-year return period, with gravity drainage feasibility to be confirmed during the detailed design stage, and pumping considered if gravity flow is not viable.

**Groundwater and Dewatering:**

The hydrogeological investigation is currently unavailable, and details regarding groundwater conditions and dewatering requirements will be provided during the detailed design stage.

**Recommendations:**

The following studies/reports/coordination are required for the later stages of the design:


- ▶ Further coordination with architect is required to confirm the type of construction and sprinkler system for both existing and proposed buildings;
- ▶ Further coordination with the mechanical consultant is required to finalize the size of the water service lines;
- ▶ As-built drawings are required to confirm the existing storm and sanitary outlets, including their invert elevations, to verify the feasibility of connecting the proposed systems to Payzac Avenue and to ensure gravity flow can be achieved.
- ▶ Further coordination with the mechanical consultant is required to finalize the size of the sanitary service lines; and

If you have any questions, please do not hesitate to contact the undersigned.

**LEA CONSULTING LTD.**

Respectfully Submitted ,

Harshdeep Randhawa



---

Prepared by:  
Harshdeep Randhawa  
Civil Designer

---

Reviewed and Approved by:  
Gowtham Sivakumar, P.Eng.  
Project Manager

# APPENDIX A

## Background Information & Proposed Site Plan

| Site Statistics        |  | Required | Provided | Area (m <sup>2</sup> ) |
|------------------------|--|----------|----------|------------------------|
| Site Area              |  |          |          | 29,143                 |
| Public ROW             |  |          |          | 5,217                  |
| Metrolinx Station Area |  |          |          | 3,522                  |
| Net Developable Area   |  |          |          | 20,404                 |
| Parkland Dedication    |  |          |          | 1,750                  |
| Net Site Area          |  |          |          | 18,654                 |
| POPs (Total)           |  |          |          | 2,830                  |
| Station Plaza*         |  |          |          | 1,000                  |
| Livingston Connection  |  |          |          | 1,830                  |
| Private ROW            |  |          |          | 4,266                  |
| Development Lands      |  |          |          | 11,558                 |
| Net FSI                |  |          |          | 10.25                  |

\*Station Plaza will not be provided should PUDO Option 2 is selected

as the final design

| Parking Statistics            |          |          |                    |             |          |
|-------------------------------|----------|----------|--------------------|-------------|----------|
| Option 1:                     |          | Total    | Accessible Parking | PUDO Spaces |          |
| Urban PUDO                    | Required | Provided | Required           | Provided    | Provided |
| Visitor (Metrolinx)           |          | 760      | 17                 | 17          | 19       |
| Visitor (TOC)                 | 52       | 52       |                    |             |          |
| Car-Share (TOC)               | 2        | 2        |                    |             |          |
| Residential (TOC)             | 453      | 15       | 15                 |             |          |
| <b>Total</b>                  |          | 1267     |                    |             |          |
| Option 2: High-Ridership PUDO |          | Total    | Accessible Parking | PUDO Spaces |          |
| Required                      | Provided | Required | Provided           | Provided    | Provided |
| Visitor (Metrolinx)           |          | 760      | 17                 | 17          | 25       |
| Visitor (TOC)                 | 52       | 52       |                    |             |          |
| Car-Share (TOC)               | 2        | 2        |                    |             |          |
| Residential (TOC)             | 453      | 15       |                    |             |          |
| <b>Total</b>                  |          | 1267     |                    |             |          |
| Option 3: Underground PUDO    |          | Total    | Accessible Parking | PUDO Spaces |          |
| Required                      | Provided | Required | Provided           | Provided    | Provided |
| Visitor (Metrolinx)           |          | 709      | 17                 | 17          | 30       |
| Visitor (TOC)                 | 52       | 52       |                    |             |          |
| Car-Share (TOC)               | 2        | 2        |                    |             |          |
| Residential (TOC)             | 453      | 15       | 15                 |             |          |
| <b>Total</b>                  |          | 1216     | 32                 | 32          | 30       |

| Bike Parking |          |          |
|--------------|----------|----------|
|              | Required | Provided |
| Short-Term   | 179      | 179      |
| Long-Term    | 1724     | 1724     |
| <b>Total</b> | 1903     | 1903     |

| Loading      |          |          |
|--------------|----------|----------|
|              | Required | Provided |
| Type G       | 3        | 3        |
| Type C       | 3        | 3        |
| Type B       | 2        | 2        |
| <b>Total</b> | 8        | 8        |

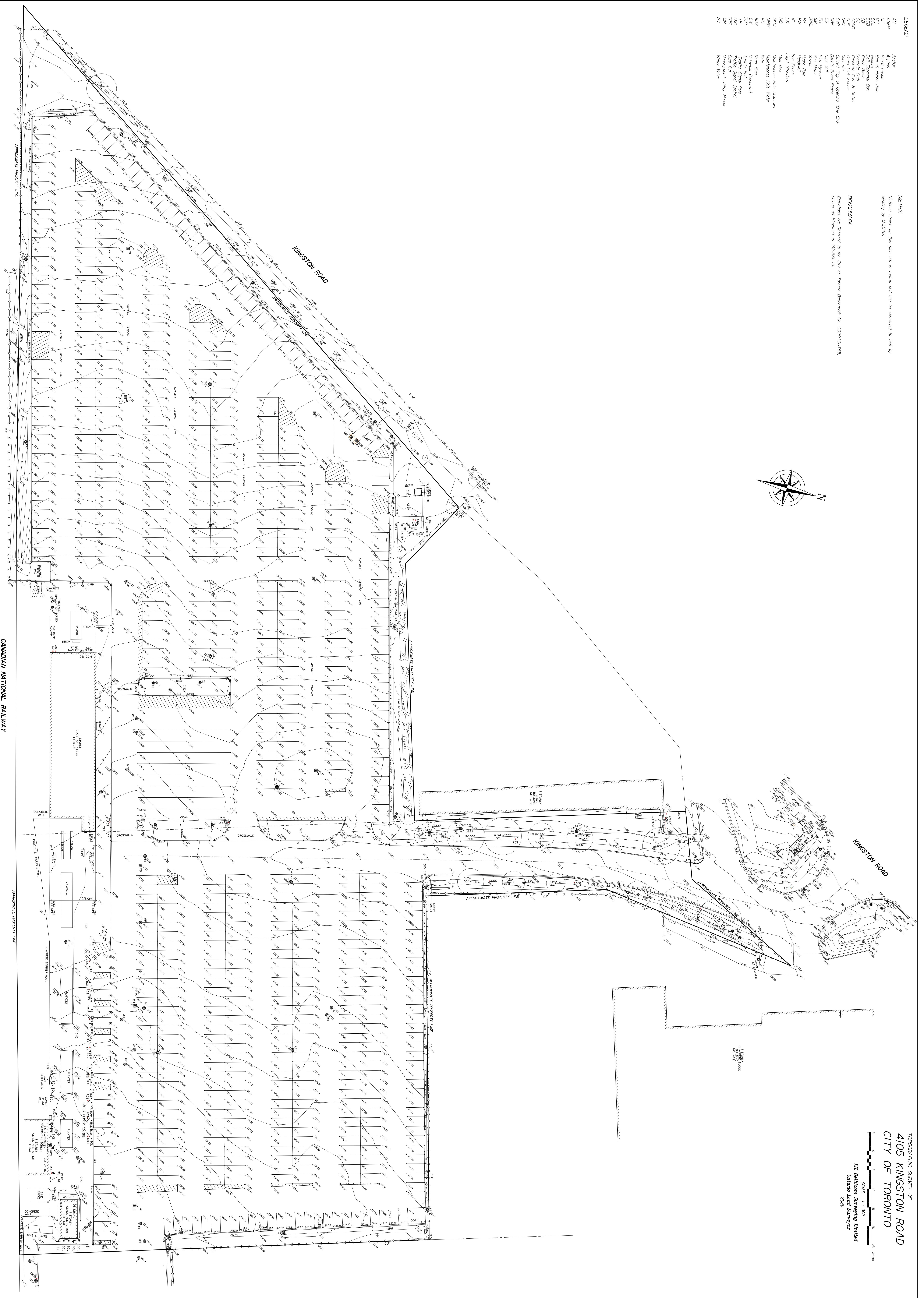
|               | TOWER    | Unit Count |             |       |             |       |              |
|---------------|----------|------------|-------------|-------|-------------|-------|--------------|
|               |          | 1 Bed      | 1 Bed + Den | 2 Bed | 2 Bed + Den | 3 Bed | Total Suites |
|               | Podium   | 0          | 24          | 24    | 0           | 72    | 120          |
|               | Tower A1 | 128        | 64          | 64    | 64          | 0     | 320          |
|               | Tower A2 | 108        | 54          | 54    | 54          | 0     | 270          |
| <b>TOTALS</b> |          | 33%        | 20%         | 20%   | 17%         | 10%   | 100%         |
|               |          | 236        | 142         | 142   | 118         | 72    | 710          |

|               | TOWER    | Unit Count |             |       |             |       |              |
|---------------|----------|------------|-------------|-------|-------------|-------|--------------|
|               |          | 1 Bed      | 1 Bed + Den | 2 Bed | 2 Bed + Den | 3 Bed | Total Suites |
|               | Podium   | 18         | 102         | 12    | 0           | 36    | 168          |
|               | Tower B1 | 156        | 156         | 0     | 52          | 156   | 520          |
|               | Tower B2 | 104        | 208         | 0     | 208         | 0     | 520          |
| <b>TOTALS</b> |          | 23%        | 39%         | 1%    | 22%         | 16%   | 100.00%      |
|               |          | 278        | 466         | 12    | 260         | 192   | 1208         |

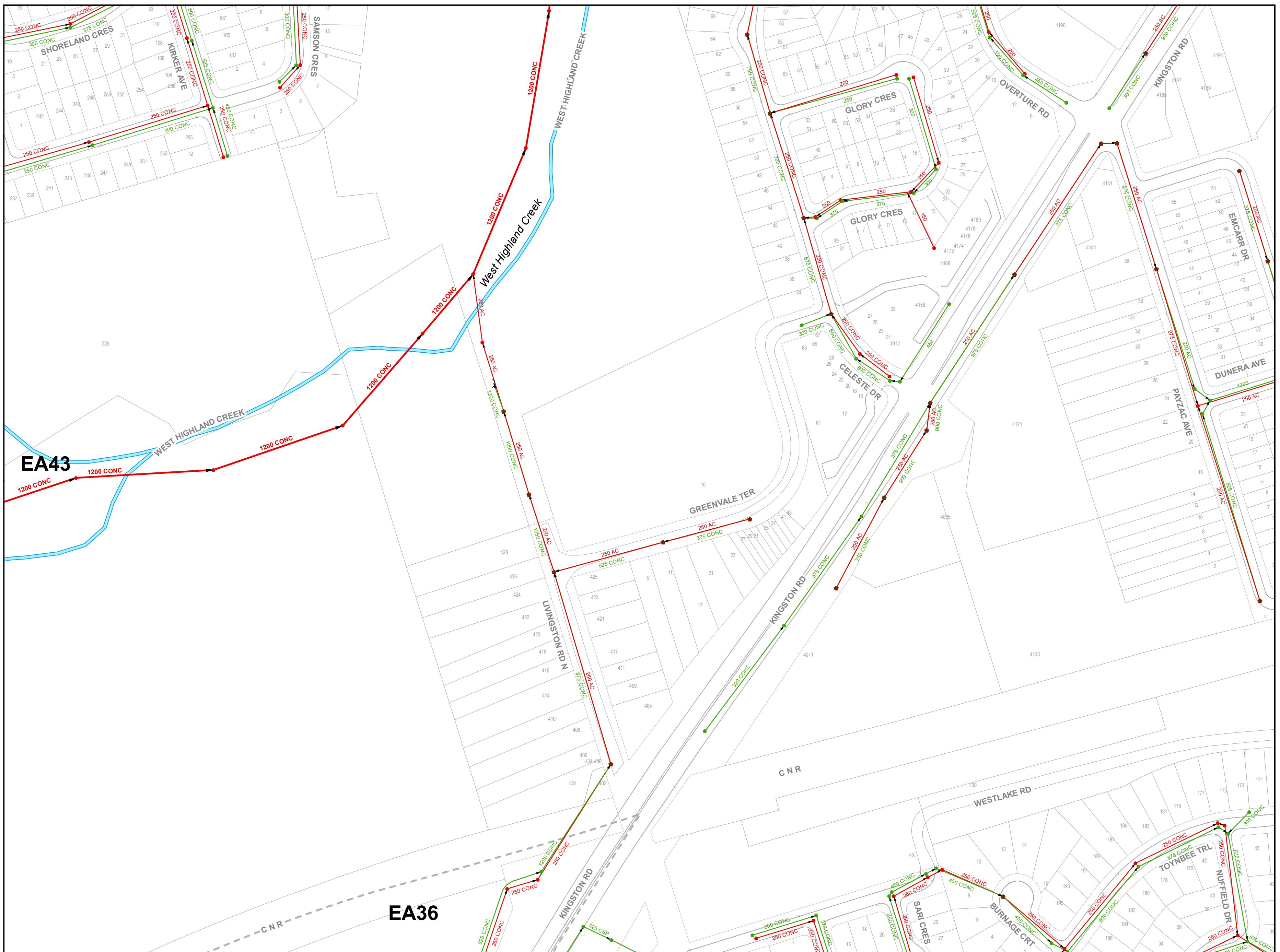
|               | TOWER    | Unit Count |             |       |             |       |              |
|---------------|----------|------------|-------------|-------|-------------|-------|--------------|
|               |          | 1 Bed      | 1 Bed + Den | 2 Bed | 2 Bed + Den | 3 Bed | Total Suites |
|               | Podium   | 24         | 90          | 8     | 30          | 24    | 176          |
|               | Tower C1 | 44         | 88          | 0     | 88          | 0     | 220          |
|               | Tower C2 | 110        | 0           | 22    | 44          | 44    | 220          |
| <b>TOTALS</b> |          | 29%        | 29%         | 5%    | 26%         | 11%   | 100%         |
|               |          | 178        | 178         | 30    | 162         | 68    | 616          |

|               | TOWER   | Unit Count |             |       |             |       |              |
|---------------|---------|------------|-------------|-------|-------------|-------|--------------|
|               |         | 1 Bed      | 1 Bed + Den | 2 Bed | 2 Bed + Den | 3 Bed | Total Suites |
|               | BLOCK A | 236        | 142         | 142   | 118         | 72    | 710          |
|               | BLOCK B | 278        | 466         | 12    | 260         | 192   | 1208         |
|               | BLOCK C | 178        | 178         | 30    | 162         | 68    | 616          |
| <b>TOTALS</b> |         | 27%        | 31%         | 7.3%  | 21%         | 13%   | 100%         |
|               |         | 692        | 786         | 184   | 540         | 332   | 2534         |

| Building Statistics      |  | Area (m <sup>2</sup> ) |
|--------------------------|--|------------------------|
| Below Grade GCA          |  | 47,904                 |
| Above Grade GCA          |  | 227,799                |
| Back of House            |  | 30,911                 |
| Amenity Space (Total)    |  | 9,194                  |
| Indoor                   |  | 5,562                  |
| Outdoor                  |  | 3,632                  |
| Gross Floor Area (Total) |  | 191,291                |
| Residential GFA          |  | 189,525                |
| Retail GFA               |  | 1,766                  |
| FSI                      |  | 6.56                   |
| Net FSI                  |  | 10.25                  |


\*Station Plaza will not be provided should PUDO Option 2 is selected

as the final design


| Development Block C | | | | | |
| --- | --- | --- | --- | --- | --- |
| Gross Construction Area | | | Deduction | | Gross Floor Area |
|  | Back of House | Amenity Space | Total | Residential | Retail |

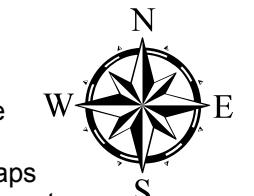


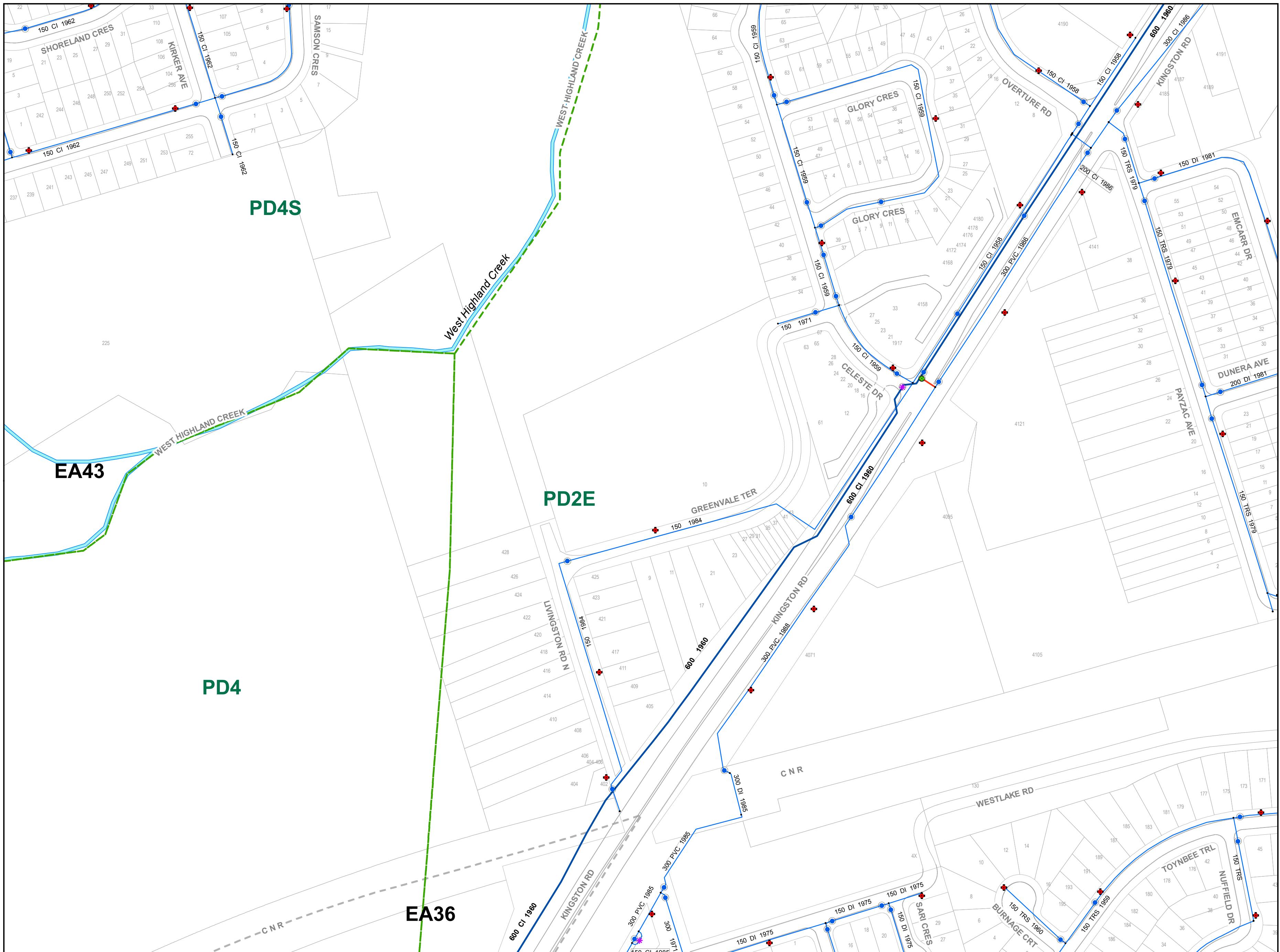

<tbl\_r








## Toronto Sewer Atlas


|               |                 |                         |                  |
|---------------|-----------------|-------------------------|------------------|
| Large Chamber | Control Manhole | Outfall                 | Sewer            |
| Manhole       |                 |                         |                  |
| • Combined    | ■ Combined      | ) Outfall               | Storm            |
| • Dual        | ■ Dual          | — Foundation Drain      | River            |
| • Sanitary    | ■ Sanitary      | — Combined              | Highway          |
| • Storm       | ■ Storm         | — Sanitary Trunk        | Curb             |
| • Foundation  |                 | — Storm Trunk           | — Wards Boundary |
|               |                 | — Other                 |                  |
|               |                 | □ Twin Inlet Catchbasin |                  |

Third Edition  
Date: 01/09/2010

0 50 100 150 200 Metres

|      |      |      |
|------|------|------|
| 1140 | 1163 | 1185 |
| 1141 | 1164 | 1186 |
| 1142 | 1165 | 1187 |





# Toronto Water Atlas

**Hydrant** ● Other, ■ City of Toronto, ■ Private

**PRV** \* PRV, ■ Meter, ■ Pressure District Valve

**Valve** ● Open, ● Closed, ○ Chamber, ● Open, ● Closed

**Watermain** - - - Abandoned Main, - Distribution, - Transmission, - Metro Connection, ■ Reservoir, ■ Encasement

**River** ■ River

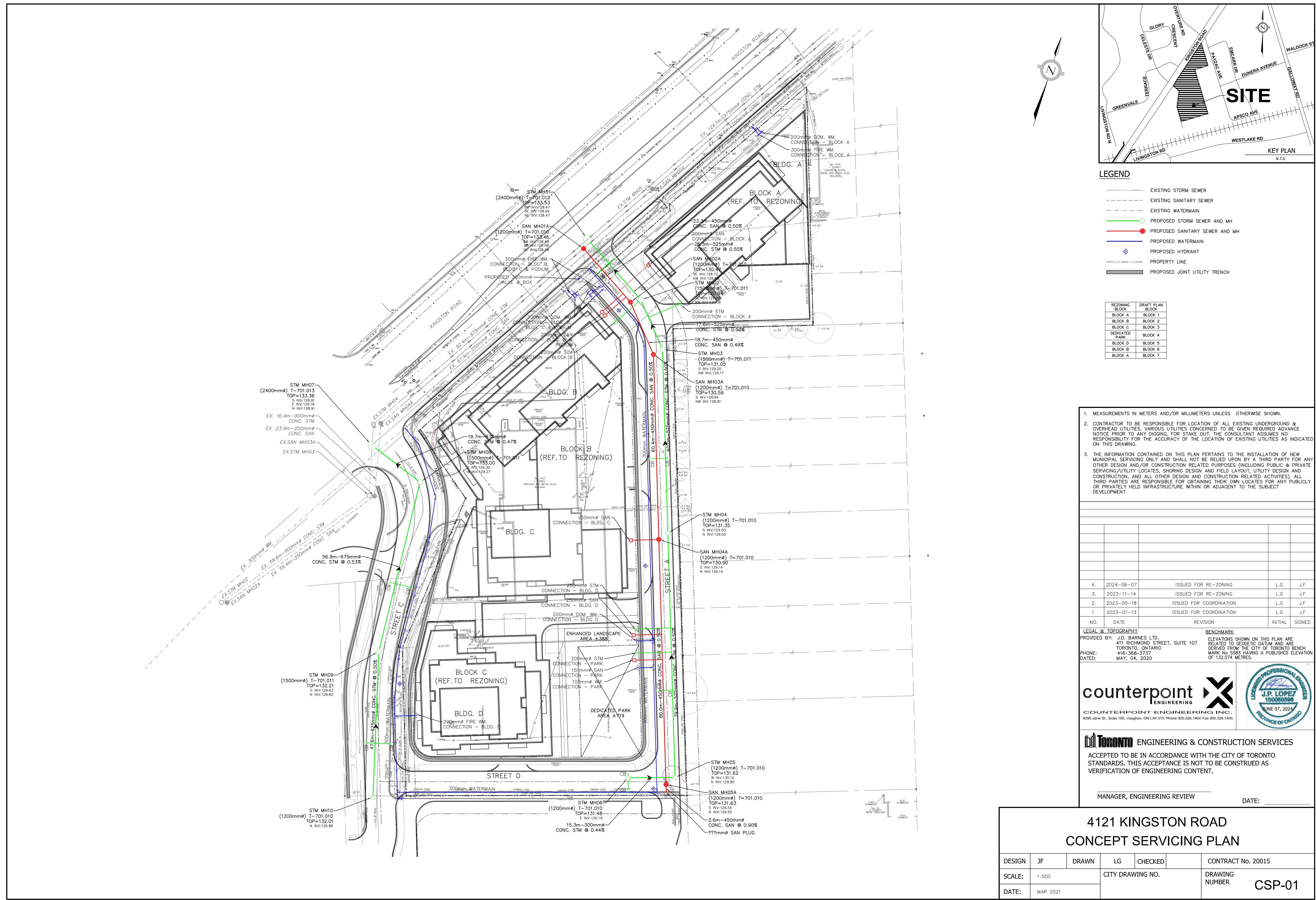
**Highway** ■ Highway

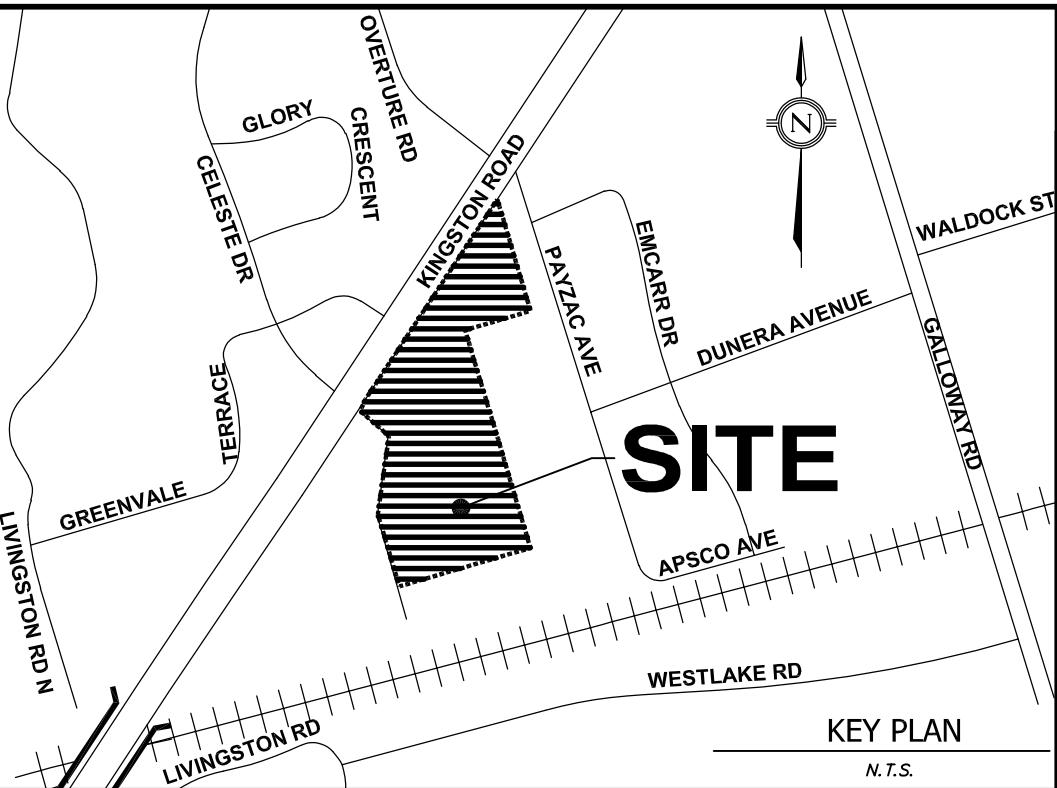
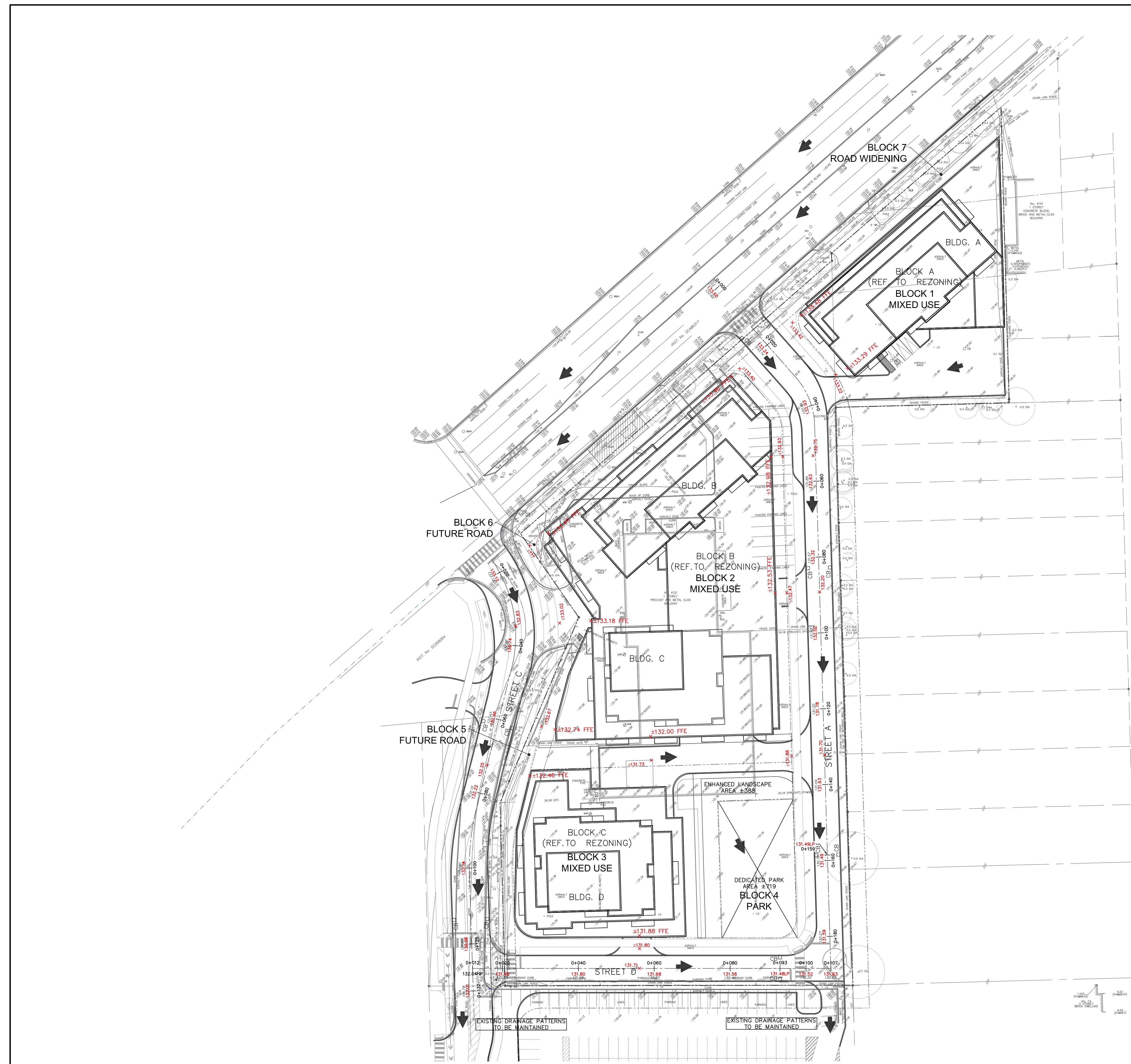
**Curb** — Curb

**Wards Boundary** ■ Wards Boundary

**Metro Connection Valve**

**Pressure District Boundary**


Third Edition  
Date: 01/09/2024



**General Notes:**

- The maps were prepared based on the most current data available to Toronto Water as of the Map Source Date.
- These maps are for planning purpose only and must not be used for construction, or as a replacement for a utility locate.
- This drawing is not to be reproduced in whole or in part without the express written permission of the City.
- Any discrepancies, inaccuracies, errors and/or omissions in the maps should be reported to Toronto Water, Water Infrastructure Management. (18th Floor, Metro Hall, 55 John St, Toronto, ON, M5V 3C6) (Tel: 416-392-3957)



|      |      |      |
|------|------|------|
| 1140 | 1163 | 1185 |
| 1141 | 1164 | 1186 |
| 1142 | 1165 | 1187 |





## LEGEND

----- PROPERTY LINE  
OVERLAND FLOW ARROW  
0+020 PROPOSED CHAINAGE  
133.24 PROPOSED ROAD GRADE  
133.14 EXISTING GRADE  
±133.28 FFE PROPOSED FINISHED  
FLOOR ELEVATION

| REZONING<br>BLOCK | DRAFT PLAN<br>BLOCK |
|-------------------|---------------------|
| BLOCK A           | BLOCK 1             |
| BLOCK B           | BLOCK 2             |
| BLOCK C           | BLOCK 3             |
| DEDICATED<br>PARK | BLOCK 4             |
| BLOCK D           | BLOCK 5             |
| BLOCK B           | BLOCK 6             |
| BLOCK A           | BLOCK 7             |

1. MEASUREMENTS IN METERS AND/OR MILLIMETERS UNLESS OTHERWISE SHOWN.
2. CONTRACTOR TO BE RESPONSIBLE FOR LOCATION OF ALL EXISTING UNDERGROUND & OVERHEAD UTILITIES. VARIOUS UTILITIES CONCERNED TO BE GIVEN REQUIRED ADVANCE NOTICE PRIOR TO ANY DIGGING, FOR STAKE OUT. THE CONSULTANT ASSUMES NO RESPONSIBILITY FOR THE ACCURACY OF THE LOCATION OF EXISTING UTILITIES AS INDICATED ON THIS DRAWING.
3. THE INFORMATION CONTAINED ON THIS PLAN PERTAINS TO THE INSTALLATION OF NEW MUNICIPAL SERVICING ONLY AND SHALL NOT BE RELIED UPON BY A THIRD PARTY FOR ANY OTHER DESIGN AND/OR CONSTRUCTION RELATED PURPOSES (INCLUDING PUBLIC & PRIVATE SERVICING/UTILITY LOCATES, SHORING DESIGN AND FIELD LAYOUT, UTILITY DESIGN AND CONSTRUCTION, AND ALL OTHER DESIGN AND CONSTRUCTION RELATED ACTIVITIES). ALL THIRD PARTIES ARE RESPONSIBLE FOR OBTAINING THEIR OWN LOCATES FOR ANY PUBLICLY OR PRIVATELY HELD INFRASTRUCTURE WITHIN OR ADJACENT TO THE SUBJECT

| NO. | DATE       | REVISION                | INITIAL | SIGNED |
|-----|------------|-------------------------|---------|--------|
| 5.  | 2024-11-15 | ISSUED FOR RE-ZONING    | L.G     | J.F    |
| 4.  | 2024-06-07 | ISSUED FOR RE-ZONING    | L.G     | J.F    |
| 3.  | 2023-11-14 | ISSUED FOR RE-ZONING    | L.G     | J.F    |
| 2.  | 2023-05-18 | ISSUED FOR COORDINATION | L.G     | J.F    |
| 1.  | 2023-01-13 | ISSUED FOR COORDINATION | L.G     | J.F    |

|                                                                                                                                    |                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>LEGAL &amp; TOPOGRAPHY</u>                                                                                                      | <u>BENCHMARK</u>                                                                                                                                                                    |
| PROVIDED BY: J.D. BARNES LTD.<br>411 RICHMOND STREET, SUITE 107<br>TORONTO, ONTARIO<br>PHONE: 416-368-3737<br>DATED: MAY. 04, 2020 | ELEVATIONS SHOWN ON THIS PLAN ARE<br>RELATED TO GEODETIC DATUM AND ARE<br>DERIVED FROM THE CITY OF TORONTO BENCH<br>MARK No S583 HAVING A PUBLISHED ELEVATION<br>OF 132.074 METRES. |

counterpoint  ENGINEERING

COUNTERPOINT ENGINEERING INC.



 TORONTO ENGINEERING & CONSTRUCTION SERVICES

---

MANAGER, ENGINEERING REVIEW

# 4121 KINGSTON ROAD

# CONCEPT GRADING PLAN

|        |          |       |                  |         |  |                    |
|--------|----------|-------|------------------|---------|--|--------------------|
| DESIGN | JF       | DRAWN | LG               | CHECKED |  | CONTRACT No. 20015 |
| SCALE: | 1: 500   |       | CITY DRAWING NO. |         |  | DRAWING NUMBER     |
| DATE:  | MAR 2021 |       |                  |         |  | CGP-01             |

# APPENDIX B

## WATER DEMAND CALCULATIONS

|                                                                                                                                                               |                                                      |           |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers and<br/>Planners</p> | <b>Fire Demand Calculation for Existing Building</b> |           |          |      |
|                                                                                                                                                               | Prepared:                                            | V.J.      | Page No. | B-01 |
|                                                                                                                                                               | Checked:                                             | G.S.      |          |      |
| <b>Project: Guildwood</b>                                                                                                                                     | Proj. #                                              | 25200     |          |      |
|                                                                                                                                                               | Date:                                                | 30-Oct-25 |          |      |

This calculation is following the "Water Supply for Public Fire Protection" by Fire Underwriters Survey (2020).

Formula:  $F = 220C\sqrt{A}$   
 where  $F$  = the required fire flow in litres per minute  
 $C$  = coefficient related to the type of construction.  
 $= 0.8$  for Noncombustible construction  
 $A$  = the total floor area in square metres.

|                |         |                        |                                                                                                                                              |
|----------------|---------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| LTC            | Level 1 | Area (m <sup>2</sup> ) | <i>Assumed non-combustible building.<br/>Further coordination is required to<br/>confirm type of construction for<br/>existing building.</i> |
|                | A =     | 553                    |                                                                                                                                              |
| Therefore, F = |         | 4000 l/min             |                                                                                                                                              |

#### Occupancy reduction:

For occupancies with a low contents fire hazard, the reduction rate is 15%,

Therefore:  $F = 3400$  l/min (assumed Limited Combustible)

Reduction for sprinkler protection:

Using the NFPA sprinkler system, a reduction rate of 30% is used.

Therefore:  $F = 2380$  l/min

Separation charge:

Charge for the separations on each side:

| <u>Separation</u> | <u>Charge</u> |
|-------------------|---------------|
| Greater than 30   | 0% North      |
| Greater than 30   | 0% South      |
| Greater than 30   | 0% East       |
| Greater than 30   | 0% West       |

Total charge in % 0%

Total charge in l/min 0

Required Fire Flow: 3000 l/min  
 or 50.00 l/s  
 or 792.5 US GPM

|                                                                                                                                                               |                                                       |           |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>Water Demand Calculation for Existing Building</b> |           |          |      |
|                                                                                                                                                               | Prepared:                                             | V.J.      | Page No. | B-02 |
| <b>Project: Guildwood</b>                                                                                                                                     | Checked:                                              | G.S.      |          |      |
|                                                                                                                                                               | Proj. #                                               | 25200     |          |      |
|                                                                                                                                                               | Date:                                                 | 30-Oct-25 |          |      |

#### **POPULATION CALCULATION**

| Proposed Land Use<br>Type | Density<br>Units/GFA(m <sup>2</sup> ) | Population |
|---------------------------|---------------------------------------|------------|
| Commercial                | 553                                   | 6          |
| <b>Total</b>              | <b>553.2</b>                          | <b>7</b>   |

#### **Peak Hour Demand Calculation:**

Water Demand-Commercial 250 L/capita/day  
 Peaking Factor (commercial) 1.20  
**Peak Hour Demand** **0.02 L/sec**

**TOTAL Peak Hour Demand** **0.02 L/sec**

#### **Maximum Day Demand Calculation:**

Water Demand-Commercial 250 L/capita/day  
 Peaking Factor (commercial) 1.10  
**Maximum Day Demand** **0.02 L/sec**

**TOTAL Maximum Day Demand** **0.02 L/sec**

Fire Flow for Ex. building: 50.0 L/sec

Max. Day Domestic Demand plus Fire Flow: 50.0 L/sec

**Design Water Demand** **50.0 L/sec**  
**792.9 US GPM**

|                                                                                                                                                        |                                               |           |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|----------|----------|
|  <p>LEA Consulting Ltd.<br/>Consulting Engineers and<br/>Planners</p> | Fire Demand Calculation for Proposed Building |           |          |          |
|                                                                                                                                                        | Prepared:                                     | V.J.      | Page No. | B-03     |
| Project: Guildwood                                                                                                                                     | Checked:                                      | G.S.      |          |          |
|                                                                                                                                                        | Proj. #                                       | 25200     |          |          |
|                                                                                                                                                        | Date:                                         | 30-Oct-25 |          | Tower A1 |

### Tower A

This calculation is following the "Water Supply for Public Fire Protection" by Fire Underwriters Survey (2020).

Formula:  $F = 220C\sqrt{A}$

where  $F$  = the required fire flow in litres per minute

$C$  = coefficient related to the type of construction.

= 0.8 for Noncombustible construction

$A$  = the effective total floor area in square metres. For non combustible buildings, consider the area of the two largest adjoining floor plus 50% of all floors immediately above them up to a maximum of eight.

| Area (m <sup>2</sup> ) |         |     |
|------------------------|---------|-----|
| LTC                    | Level 1 | 886 |
|                        | Level 2 | 886 |
|                        | Level 3 | 886 |

$$A = 1328$$

$$\text{Therefore, } F = 6000 \text{ l/min}$$

#### **Occupancy reduction:**

For occupancies with a low contents fire hazard, the reduction rate is 15%,

Therefore:  $F = 5100 \text{ l/min}$  (assumed Limited Combustible)

#### Reduction for sprinkler protection:

Using the NFPA sprinkler system, a reduction rate of 30% is used.

Therefore:  $F = 3570 \text{ l/min}$

#### Separation charge:

Charge for the separations on each side:

| Separation      | Charge    |
|-----------------|-----------|
| 10.1 m to 20 m  | 15% North |
| Greater than 30 | 0% East   |
| 20.1 m to 30 m  | 10% West  |
| 3.1 m to 10 m   | 20% South |

|                       |      |
|-----------------------|------|
| Total charge in %     | 45%  |
| Total charge in l/min | 2295 |

Required Fire Flow:

6000 l/min  
100.00 l/s  
1585.0 US GPM

or  
or

|                                                                                                                                                        |                                               |           |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|----------|----------|
|  <p>LEA Consulting Ltd.<br/>Consulting Engineers and<br/>Planners</p> | Fire Demand Calculation for Proposed Building |           |          |          |
|                                                                                                                                                        | Prepared:                                     | V.J.      | Page No. | B-04     |
| Project: Guildwood                                                                                                                                     | Checked:                                      | G.S.      |          |          |
|                                                                                                                                                        | Proj. #                                       | 25200     |          | Tower A2 |
|                                                                                                                                                        | Date:                                         | 30-Oct-25 |          |          |

### Tower A

This calculation is following the "Water Supply for Public Fire Protection" by Fire Underwriters Survey (2020).

Formula:  $F = 220C\sqrt{A}$

where  $F$  = the required fire flow in litres per minute

$C$  = coefficient related to the type of construction.

= 0.8 for Noncombustible construction

$A$  = the effective total floor area in square metres. For non combustible buildings, consider the area of the two largest adjoining floor plus 50% of all floors immediately above them up to a maximum of eight.

|     |         | Area (m <sup>2</sup> ) |
|-----|---------|------------------------|
| LTC | Level 1 | 886                    |
|     | Level 2 | 886                    |
|     | Level 3 | 886                    |

$$A = 1330$$

$$\text{Therefore, } F = 6000 \text{ l/min}$$

#### Occupancy reduction:

For occupancies with a low contents fire hazard, the reduction rate is 15%,

Therefore:  $F = 5100 \text{ l/min}$  (assumed Limited Combustible)

Reduction for sprinkler protection:

Using the NFPA sprinkler system, a reduction rate of 30% is used.

Therefore:  $F = 3570 \text{ l/min}$

Separation charge:

Charge for the separations on each side:

| Separation      | Charge    |
|-----------------|-----------|
| 3.1 m to 10 m   | 20% North |
| Greater than 30 | 0% East   |
| Greater than 30 | 0% West   |
| Greater than 30 | 0% South  |

|                       |      |
|-----------------------|------|
| Total charge in %     | 20%  |
| Total charge in l/min | 1020 |

Required Fire Flow:

5000 l/min

83.33 l/s

1320.8 US GPM

or

or

|                                                                                                                                                        |                                               |           |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|----------|----------|
|  <p>LEA Consulting Ltd.<br/>Consulting Engineers and<br/>Planners</p> | Fire Demand Calculation for Proposed Building |           |          |          |
|                                                                                                                                                        | Prepared:                                     | V.J.      | Page No. | B-05     |
| Project: Guildwood                                                                                                                                     | Checked:                                      | G.S.      |          |          |
|                                                                                                                                                        | Proj. #                                       | 25200     |          | Tower B1 |
|                                                                                                                                                        | Date:                                         | 30-Oct-25 |          |          |

### Tower A

This calculation is following the "Water Supply for Public Fire Protection" by Fire Underwriters Survey (2020).

Formula:  $F = 220C\sqrt{A}$

where  $F$  = the required fire flow in litres per minute

$C$  = coefficient related to the type of construction.

= 0.8 for Noncombustible construction

$A$  = the effective total floor area in square metres. For non combustible buildings, consider the area of the two largest adjoining floor plus 50% of all floors immediately above them up to a maximum of eight.

|     |         | Area (m <sup>2</sup> ) |
|-----|---------|------------------------|
| LTC | Level 1 | 997                    |
|     | Level 2 | 997                    |
|     | Level 3 | 997                    |

$$A = 1496$$

$$\text{Therefore, } F = 7000 \text{ l/min}$$

#### Occupancy reduction:

For occupancies with a low contents fire hazard, the reduction rate is 15%,

Therefore:  $F = 5950 \text{ l/min}$  (assumed Limited Combustible)

Reduction for sprinkler protection:

Using the NFPA sprinkler system, a reduction rate of 30% is used.

Therefore:  $F = 4165 \text{ l/min}$

Separation charge:

Charge for the separations on each side:

| Separation      | Charge    |
|-----------------|-----------|
| 3.1 m to 10 m   | 20% North |
| 20.1 m to 30 m  | 10% East  |
| 20.1 m to 30 m  | 10% West  |
| Greater than 30 | 0% South  |

$$\begin{aligned} \text{Total charge in \%} &= 40\% \\ \text{Total charge in l/min} &= 2380 \end{aligned}$$

$$\begin{aligned} \text{Required Fire Flow:} & \quad 7000 \text{ l/min} \\ & \quad 116.67 \text{ l/s} \\ & \quad 1849.2 \text{ US GPM} \end{aligned}$$

|                                                                                                                                                        |                                               |           |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|----------|----------|
|  <p>LEA Consulting Ltd.<br/>Consulting Engineers and<br/>Planners</p> | Fire Demand Calculation for Proposed Building |           |          |          |
|                                                                                                                                                        | Prepared:                                     | V.J.      | Page No. | B-06     |
| Project: Guildwood                                                                                                                                     | Checked:                                      | G.S.      |          |          |
|                                                                                                                                                        | Proj. #                                       | 25200     |          | Tower B2 |
|                                                                                                                                                        | Date:                                         | 30-Oct-25 |          |          |

### Tower A

This calculation is following the "Water Supply for Public Fire Protection" by Fire Underwriters Survey (2020).

Formula:  $F = 220C\sqrt{A}$

where  $F$  = the required fire flow in litres per minute

$C$  = coefficient related to the type of construction.

= 0.8 for Noncombustible construction

$A$  = the effective total floor area in square metres. For non combustible buildings, consider the area of the two largest adjoining floor plus 50% of all floors immediately above them up to a maximum of eight.

|     |         | Area (m <sup>2</sup> ) |
|-----|---------|------------------------|
| LTC | Level 1 | 916                    |
|     | Level 2 | 916                    |
|     | Level 3 | 916                    |

$$A = 1374$$

$$\text{Therefore, } F = 7000 \text{ l/min}$$

#### Occupancy reduction:

For occupancies with a low contents fire hazard, the reduction rate is 15%,

Therefore:  $F = 5950 \text{ l/min}$  (assumed Limited Combustible)

#### Reduction for sprinkler protection:

Using the NFPA sprinkler system, a reduction rate of 30% is used.

Therefore:  $F = 4165 \text{ l/min}$

#### Separation charge:

Charge for the separations on each side:

| Separation      | Charge    |
|-----------------|-----------|
| 20.1 m to 30 m  | 10% North |
| 20.1 m to 30 m  | 10% East  |
| 3.1 m to 10 m   | 20% West  |
| Greater than 30 | 0% South  |

|                       |      |
|-----------------------|------|
| Total charge in %     | 40%  |
| Total charge in l/min | 2380 |

Required Fire Flow:  $7000 \text{ l/min}$   
 or  $116.67 \text{ l/s}$   
 or  $1849.2 \text{ US GPM}$

|                                                                                                                                                        |                                               |           |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|----------|----------|
|  <p>LEA Consulting Ltd.<br/>Consulting Engineers and<br/>Planners</p> | Fire Demand Calculation for Proposed Building |           |          |          |
|                                                                                                                                                        | Prepared:                                     | V.J.      | Page No. | B-07     |
| Project: Guildwood                                                                                                                                     | Checked:                                      | G.S.      |          |          |
|                                                                                                                                                        | Proj. #                                       | 25200     |          | Tower C1 |
|                                                                                                                                                        | Date:                                         | 30-Oct-25 |          |          |

### Tower A

This calculation is following the "Water Supply for Public Fire Protection" by Fire Underwriters Survey (2020).

Formula:  $F = 220C\sqrt{A}$

where  $F$  = the required fire flow in litres per minute

$C$  = coefficient related to the type of construction.

= 0.8 for Noncombustible construction

$A$  = the effective total floor area in square metres. For non combustible buildings, consider the area of the two largest adjoining floor plus 50% of all floors immediately above them up to a maximum of eight.

| Area (m <sup>2</sup> ) |         |     |
|------------------------|---------|-----|
| LTC                    | Level 1 | 841 |
|                        | Level 2 | 841 |
|                        | Level 3 | 841 |

$$A = 1261$$

$$\text{Therefore, } F = 6000 \text{ l/min}$$

#### Occupancy reduction:

For occupancies with a low contents fire hazard, the reduction rate is 15%,

Therefore:  $F = 5100 \text{ l/min}$  (assumed Limited Combustible)

Reduction for sprinkler protection:

Using the NFPA sprinkler system, a reduction rate of 30% is used.

Therefore:  $F = 3570 \text{ l/min}$

Separation charge:

Charge for the separations on each side:

| Separation      | Charge    |
|-----------------|-----------|
| 10.1 m to 20 m  | 15% North |
| 20.1 m to 30 m  | 10% East  |
| Greater than 30 | 0% West   |
| 3.1 m to 10 m   | 20% South |

|                       |      |
|-----------------------|------|
| Total charge in %     | 45%  |
| Total charge in l/min | 2295 |

Required Fire Flow:  $6000 \text{ l/min}$   
 or  $100.00 \text{ l/s}$   
 or  $1585.0 \text{ US GPM}$

|                                                                                                                                                        |                                               |           |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|----------|----------|
|  <p>LEA Consulting Ltd.<br/>Consulting Engineers and<br/>Planners</p> | Fire Demand Calculation for Proposed Building |           |          |          |
|                                                                                                                                                        | Prepared:                                     | V.J.      | Page No. | B-08     |
| Project: Guildwood                                                                                                                                     | Checked:                                      | G.S.      |          |          |
|                                                                                                                                                        | Proj. #                                       | 25200     |          | Tower C2 |
|                                                                                                                                                        | Date:                                         | 30-Oct-25 |          |          |

### Tower A

This calculation is following the "Water Supply for Public Fire Protection" by Fire Underwriters Survey (2020).

Formula:  $F = 220C\sqrt{A}$

where  $F$  = the required fire flow in litres per minute

$C$  = coefficient related to the type of construction.

= 0.8 for Noncombustible construction

$A$  = the effective total floor area in square metres. For non combustible buildings, consider the area of the two largest adjoining floor plus 50% of all floors immediately above them up to a maximum of eight.

|     |         | Area (m <sup>2</sup> ) |
|-----|---------|------------------------|
| LTC | Level 1 | 840                    |
|     | Level 2 | 840                    |
|     | Level 3 | 840                    |

$$A = 1260$$

$$\text{Therefore, } F = 6000 \text{ l/min}$$

### **Occupancy reduction:**

For occupancies with a low contents fire hazard, the reduction rate is 15%,

Therefore:  $F = 5100 \text{ l/min}$  (assumed Limited Combustible)

Reduction for sprinkler protection:

Using the NFPA sprinkler system, a reduction rate of 30% is used.

Therefore:  $F = 3570 \text{ l/min}$

Separation charge:

Charge for the separations on each side:

| Separation      | Charge    |
|-----------------|-----------|
| 3.1 m to 10 m   | 20% North |
| 20.1 m to 30 m  | 10% East  |
| Greater than 30 | 0% West   |
| Greater than 30 | 0% South  |

|                       |      |
|-----------------------|------|
| Total charge in %     | 30%  |
| Total charge in l/min | 1530 |

Required Fire Flow:  $6000 \text{ l/min}$   
 or  $100.00 \text{ l/s}$   
 or  $1585.0 \text{ US GPM}$

|                                                                                                                                                               |                                                       |           |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>Water Demand Calculation for Proposed Building</b> |           |          |      |
|                                                                                                                                                               | Prepared:                                             | V.J.      | Page No. | B-09 |
| <b>Project: Guildwood</b>                                                                                                                                     | Checked:                                              | G.S.      |          |      |
|                                                                                                                                                               | Proj. #                                               | 25200     | Tower A1 |      |
|                                                                                                                                                               | Date:                                                 | 30-Oct-25 |          |      |

#### POPULATION CALCULATION

| Proposed Land Use |                            | Density |                           | Population |
|-------------------|----------------------------|---------|---------------------------|------------|
| Type              | Units/GFA(m <sup>2</sup> ) |         |                           |            |
| 1-bed             | 128.0                      | 1.4     | persons/bed               | 179        |
| 1-bed + Den       | 76.0                       | 1.4     | persons/bed               | 106        |
| 2-bed             | 76.0                       | 2.1     | persons/bed               | 160        |
| 2-bed + Den       | 64.0                       | 2.1     | persons/bed               | 134        |
| 3-bed             | 36.0                       | 3.1     | persons/bed               | 112        |
| <b>Total</b>      | <b>380.0</b>               |         |                           | <b>692</b> |
| Commercial/Retail | 2491                       | 1.1     | persons/100m <sup>2</sup> | 27         |
| <b>Total</b>      | <b>2491.0</b>              |         |                           | <b>28</b>  |

#### Peak Hour Demand Calculation:

|                                      |                   |
|--------------------------------------|-------------------|
| Water Demand-Residential multi-unit  | 190 L/capita/day  |
| Peaking Factor (Apartments)          | 2.50              |
| <b>Peak Hour Demand (Apartments)</b> | <b>3.80 L/sec</b> |
| Water Demand-Commercial              | 250 L/capita/day  |
| Peaking Factor (Commercial)          | 1.20              |
| <b>Peak Hour Demand (Commercial)</b> | <b>0.10 L/sec</b> |
| <b>TOTAL Peak Hour Demand</b>        | <b>3.90 L/sec</b> |

#### Maximum Day Demand Calculation:

|                                          |                      |
|------------------------------------------|----------------------|
| Water Demand (Residential multi-unit)    | 190 L/capita/day     |
| Peaking Factor (Apartments)              | 1.30                 |
| <b>Maximum Day Demand (Apartments)</b>   | <b>1.98 L/sec</b>    |
| Water Demand-Commercial                  | 250 L/capita/day     |
| Peaking Factor (Commercial)              | 1.10                 |
| <b>Maximum Day Demand (Commercial)</b>   | <b>0.09 L/sec</b>    |
| <b>TOTAL Maximum Day Demand</b>          | <b>2.07 L/sec</b>    |
| Fire Flow for Prop. building:            | 100.0 L/sec          |
| Max. Day Domestic Demand plus Fire Flow: | 102.1 L/sec          |
| <b>Design Water Demand</b>               | <b>102.1 L/sec</b>   |
|                                          | <b>1617.8 US GPM</b> |

|                                                                                                                                                               |                                                       |           |          |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|----------|-------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>Water Demand Calculation for Proposed Building</b> |           |          |       |
|                                                                                                                                                               | Prepared:                                             | V.J.      | Page No. | B-010 |
| <b>Project: Guildwood</b>                                                                                                                                     | Checked:                                              | G.S.      |          |       |
|                                                                                                                                                               | Proj. #                                               | 25200     | Tower A2 |       |
|                                                                                                                                                               | Date:                                                 | 30-Oct-25 |          |       |

#### POPULATION CALCULATION

| Proposed Land Use |                            | Density |                           | Population |
|-------------------|----------------------------|---------|---------------------------|------------|
| Type              | Units/GFA(m <sup>2</sup> ) |         |                           |            |
| 1-bed             | 108.0                      | 1.4     | persons/bed               | 151        |
| 1-bed + Den       | 66.0                       | 1.4     | persons/bed               | 92         |
| 2-bed             | 66.0                       | 2.1     | persons/bed               | 139        |
| 2-bed + Den       | 54.0                       | 2.1     | persons/bed               | 113        |
| 3-bed             | 36.0                       | 3.1     | persons/bed               | 112        |
| <b>Total</b>      | <b>330.0</b>               |         |                           | <b>608</b> |
| Commercial/Retail | 2485                       | 1.1     | persons/100m <sup>2</sup> | 27         |
| <b>Total</b>      | <b>2485.0</b>              |         |                           | <b>28</b>  |

#### Peak Hour Demand Calculation:

|                                      |                   |
|--------------------------------------|-------------------|
| Water Demand-Residential multi-unit  | 190 L/capita/day  |
| Peaking Factor (Apartments)          | 2.50              |
| <b>Peak Hour Demand (Apartments)</b> | <b>3.34 L/sec</b> |
| Water Demand-Commercial              | 250 L/capita/day  |
| Peaking Factor (Commercial)          | 1.20              |
| <b>Peak Hour Demand (Commercial)</b> | <b>0.10 L/sec</b> |
| <b>TOTAL Peak Hour Demand</b>        | <b>3.44 L/sec</b> |

#### Maximum Day Demand Calculation:

|                                        |                   |
|----------------------------------------|-------------------|
| Water Demand (Residential multi-unit)  | 190 L/capita/day  |
| Peaking Factor (Apartments)            | 1.30              |
| <b>Maximum Day Demand (Apartments)</b> | <b>1.74 L/sec</b> |
| Water Demand-Commercial                | 250 L/capita/day  |
| Peaking Factor (Commercial)            | 1.10              |
| <b>Maximum Day Demand (Commercial)</b> | <b>0.09 L/sec</b> |
| <b>TOTAL Maximum Day Demand</b>        | <b>1.83 L/sec</b> |

Fire Flow for Prop. building: 83.3 L/sec

Max. Day Domestic Demand plus Fire Flow: 85.2 L/sec

**Design Water Demand** **85.2 L/sec**  
**1349.8 US GPM**

|                                                                                                                                                               |                                                       |           |          |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|----------|-------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>Water Demand Calculation for Proposed Building</b> |           |          |       |
|                                                                                                                                                               | Prepared:                                             | V.J.      | Page No. | B-011 |
| <b>Project: Guildwood</b>                                                                                                                                     | Checked:                                              | G.S.      |          |       |
|                                                                                                                                                               | Proj. #                                               | 25200     | Tower B1 |       |
|                                                                                                                                                               | Date:                                                 | 30-Oct-25 |          |       |

#### POPULATION CALCULATION

| Proposed Land Use |                            | Density |                           | Population  |
|-------------------|----------------------------|---------|---------------------------|-------------|
| Type              | Units/GFA(m <sup>2</sup> ) |         |                           |             |
| 1-bed             | 165.0                      | 1.4     | persons/bed               | 231         |
| 1-bed + Den       | 207.0                      | 1.4     | persons/bed               | 290         |
| 2-bed             | 6.0                        | 2.1     | persons/bed               | 13          |
| 2-bed + Den       | 52.0                       | 2.1     | persons/bed               | 109         |
| 3-bed             | 174.0                      | 3.1     | persons/bed               | 539         |
| <b>Total</b>      | <b>604.0</b>               |         |                           | <b>1182</b> |
| Commercial/Retail | 1786                       | 1.1     | persons/100m <sup>2</sup> | 20          |
| <b>Total</b>      | <b>1786.0</b>              |         |                           | <b>20</b>   |

#### Peak Hour Demand Calculation:

|                                      |                   |
|--------------------------------------|-------------------|
| Water Demand-Residential multi-unit  | 190 L/capita/day  |
| Peaking Factor (Apartments)          | 2.50              |
| <b>Peak Hour Demand (Apartments)</b> | <b>6.50 L/sec</b> |
| Water Demand-Commercial              | 250 L/capita/day  |
| Peaking Factor (Commercial)          | 1.20              |
| <b>Peak Hour Demand (Commercial)</b> | <b>0.07 L/sec</b> |
| <b>TOTAL Peak Hour Demand</b>        | <b>6.57 L/sec</b> |

#### Maximum Day Demand Calculation:

|                                        |                   |
|----------------------------------------|-------------------|
| Water Demand (Residential multi-unit)  | 190 L/capita/day  |
| Peaking Factor (Apartments)            | 1.30              |
| <b>Maximum Day Demand (Apartments)</b> | <b>3.38 L/sec</b> |
| Water Demand-Commercial                | 250 L/capita/day  |
| Peaking Factor (Commercial)            | 1.10              |
| <b>Maximum Day Demand (Commercial)</b> | <b>0.06 L/sec</b> |
| <b>TOTAL Maximum Day Demand</b>        | <b>3.44 L/sec</b> |

Fire Flow for Prop. building: 116.7 L/sec

Max. Day Domestic Demand plus Fire Flow: 120.1 L/sec

**Design Water Demand** **120.1 L/sec**  
**1903.7 US GPM**

|                                                                                                                                                               |                                                       |           |          |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|----------|-------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>Water Demand Calculation for Proposed Building</b> |           |          |       |
|                                                                                                                                                               | Prepared:                                             | V.J.      | Page No. | B-012 |
| <b>Project: Guildwood</b>                                                                                                                                     | Checked:                                              | G.S.      |          |       |
|                                                                                                                                                               | Proj. #                                               | 25200     | Tower B2 |       |
|                                                                                                                                                               | Date:                                                 | 30-Oct-25 |          |       |

#### POPULATION CALCULATION

| Proposed Land Use |                            | Density |                           | Population  |
|-------------------|----------------------------|---------|---------------------------|-------------|
| Type              | Units/GFA(m <sup>2</sup> ) |         |                           |             |
| 1-bed             | 113.0                      | 1.4     | persons/bed               | 158         |
| 1-bed + Den       | 259.0                      | 1.4     | persons/bed               | 363         |
| 2-bed             | 6.0                        | 2.1     | persons/bed               | 13          |
| 2-bed + Den       | 208.0                      | 2.1     | persons/bed               | 437         |
| 3-bed             | 18.0                       | 3.1     | persons/bed               | 56          |
| <b>Total</b>      | <b>604.0</b>               |         |                           | <b>1026</b> |
| Commercial/Retail | 1786                       | 1.1     | persons/100m <sup>2</sup> | 20          |
| <b>Total</b>      | <b>1786.0</b>              |         |                           | <b>20</b>   |

#### Peak Hour Demand Calculation:

|                                      |                   |
|--------------------------------------|-------------------|
| Water Demand-Residential multi-unit  | 190 L/capita/day  |
| Peaking Factor (Apartments)          | 2.50              |
| <b>Peak Hour Demand (Apartments)</b> | <b>5.64 L/sec</b> |
| Water Demand-Commercial              | 250 L/capita/day  |
| Peaking Factor (Commercial)          | 1.20              |
| <b>Peak Hour Demand (Commercial)</b> | <b>0.07 L/sec</b> |
| <b>TOTAL Peak Hour Demand</b>        | <b>5.71 L/sec</b> |

#### Maximum Day Demand Calculation:

|                                        |                   |
|----------------------------------------|-------------------|
| Water Demand (Residential multi-unit)  | 190 L/capita/day  |
| Peaking Factor (Apartments)            | 1.30              |
| <b>Maximum Day Demand (Apartments)</b> | <b>2.93 L/sec</b> |
| Water Demand-Commercial                | 250 L/capita/day  |
| Peaking Factor (Commercial)            | 1.10              |
| <b>Maximum Day Demand (Commercial)</b> | <b>0.06 L/sec</b> |
| <b>TOTAL Maximum Day Demand</b>        | <b>3.00 L/sec</b> |

Fire Flow for Prop. building: 116.7 L/sec

Max. Day Domestic Demand plus Fire Flow: 119.7 L/sec

**Design Water Demand** **119.7 L/sec**  
**1896.7 US GPM**

|                                                                                                                                                               |                                                       |           |          |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|----------|-------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>Water Demand Calculation for Proposed Building</b> |           |          |       |
|                                                                                                                                                               | Prepared:                                             | V.J.      | Page No. | B-013 |
| <b>Project: Guildwood</b>                                                                                                                                     | Checked:                                              | G.S.      |          |       |
|                                                                                                                                                               | Proj. #                                               | 25200     | Tower C1 |       |
|                                                                                                                                                               | Date:                                                 | 30-Oct-25 |          |       |

#### POPULATION CALCULATION

| Proposed Land Use |                            | Density |                           | Population |
|-------------------|----------------------------|---------|---------------------------|------------|
| Type              | Units/GFA(m <sup>2</sup> ) |         |                           |            |
| 1-bed             | 56.0                       | 1.4     | persons/bed               | 78         |
| 1-bed + Den       | 133.0                      | 1.4     | persons/bed               | 186        |
| 2-bed             | 4.0                        | 2.1     | persons/bed               | 8          |
| 2-bed + Den       | 103.0                      | 2.1     | persons/bed               | 216        |
| 3-bed             | 12.0                       | 3.1     | persons/bed               | 37         |
| <b>Total</b>      | <b>308.0</b>               |         |                           | <b>527</b> |
| Commercial/Retail | 1514                       | 1.1     | persons/100m <sup>2</sup> | 17         |
| <b>Total</b>      | <b>1514.0</b>              |         |                           | <b>17</b>  |

#### Peak Hour Demand Calculation:

|                                      |                   |
|--------------------------------------|-------------------|
| Water Demand-Residential multi-unit  | 190 L/capita/day  |
| Peaking Factor (Apartments)          | 2.50              |
| <b>Peak Hour Demand (Apartments)</b> | <b>2.90 L/sec</b> |
| Water Demand-Commercial              | 250 L/capita/day  |
| Peaking Factor (Commercial)          | 1.20              |
| <b>Peak Hour Demand (Commercial)</b> | <b>0.06 L/sec</b> |
| <b>TOTAL Peak Hour Demand</b>        | <b>2.96 L/sec</b> |

#### Maximum Day Demand Calculation:

|                                        |                   |
|----------------------------------------|-------------------|
| Water Demand (Residential multi-unit)  | 190 L/capita/day  |
| Peaking Factor (Apartments)            | 1.30              |
| <b>Maximum Day Demand (Apartments)</b> | <b>1.51 L/sec</b> |
| Water Demand-Commercial                | 250 L/capita/day  |
| Peaking Factor (Commercial)            | 1.10              |
| <b>Maximum Day Demand (Commercial)</b> | <b>0.05 L/sec</b> |
| <b>TOTAL Maximum Day Demand</b>        | <b>1.56 L/sec</b> |

Fire Flow for Prop. building: 100.0 L/sec

Max. Day Domestic Demand plus Fire Flow: 101.6 L/sec

**Design Water Demand** **101.6 L/sec**  
**1609.7 US GPM**

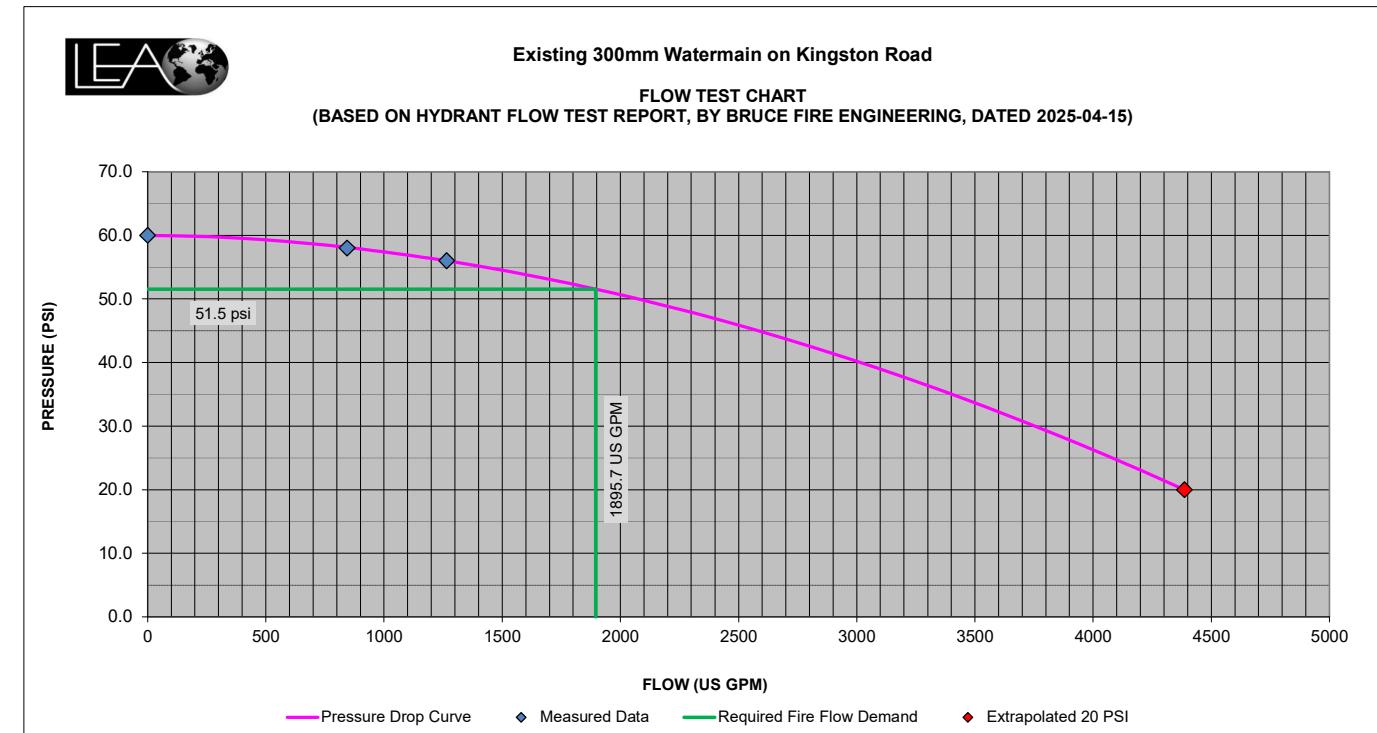
|                                                                                                                                                               |                                                       |           |          |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|----------|-------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>Water Demand Calculation for Proposed Building</b> |           |          |       |
|                                                                                                                                                               | Prepared:                                             | V.J.      | Page No. | B-014 |
| <b>Project: Guildwood</b>                                                                                                                                     | Checked:                                              | G.S.      |          |       |
|                                                                                                                                                               | Proj. #                                               | 25200     | Tower C2 |       |
|                                                                                                                                                               | Date:                                                 | 30-Oct-25 |          |       |

#### POPULATION CALCULATION

| Proposed Land Use |                            | Density |                           | Population |
|-------------------|----------------------------|---------|---------------------------|------------|
| Type              | Units/GFA(m <sup>2</sup> ) |         |                           |            |
| 1-bed             | 122.0                      | 1.4     | persons/bed               | 171        |
| 1-bed + Den       | 45.0                       | 1.4     | persons/bed               | 63         |
| 2-bed             | 26.0                       | 2.1     | persons/bed               | 55         |
| 2-bed + Den       | 59.0                       | 2.1     | persons/bed               | 124        |
| 3-bed             | 56.0                       | 3.1     | persons/bed               | 174        |
| <b>Total</b>      | <b>308.0</b>               |         |                           | <b>586</b> |
| Commercial/Retail | 1514                       | 1.1     | persons/100m <sup>2</sup> | 17         |
| <b>Total</b>      | <b>1514.0</b>              |         |                           | <b>17</b>  |

#### Peak Hour Demand Calculation:

|                                      |                   |
|--------------------------------------|-------------------|
| Water Demand-Residential multi-unit  | 190 L/capita/day  |
| Peaking Factor (Apartments)          | 2.50              |
| <b>Peak Hour Demand (Apartments)</b> | <b>3.22 L/sec</b> |
| Water Demand-Commercial              | 250 L/capita/day  |
| Peaking Factor (Commercial)          | 1.20              |
| <b>Peak Hour Demand (Commercial)</b> | <b>0.06 L/sec</b> |
| <b>TOTAL Peak Hour Demand</b>        | <b>3.28 L/sec</b> |


#### Maximum Day Demand Calculation:

|                                        |                   |
|----------------------------------------|-------------------|
| Water Demand (Residential multi-unit)  | 190 L/capita/day  |
| Peaking Factor (Apartments)            | 1.30              |
| <b>Maximum Day Demand (Apartments)</b> | <b>1.68 L/sec</b> |
| Water Demand-Commercial                | 250 L/capita/day  |
| Peaking Factor (Commercial)            | 1.10              |
| <b>Maximum Day Demand (Commercial)</b> | <b>0.05 L/sec</b> |
| <b>TOTAL Maximum Day Demand</b>        | <b>1.73 L/sec</b> |

|                                          |                    |
|------------------------------------------|--------------------|
| Fire Flow for Prop. building:            | 100.0 L/sec        |
| Max. Day Domestic Demand plus Fire Flow: | 101.7 L/sec        |
| <b>Design Water Demand</b>               | <b>101.7 L/sec</b> |

**1612.4 US GPM**

|  <p>LEA Consulting Ltd.<br/>Consulting Engineers and<br/>Planners</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <p><b>Watermain Adequacy Calculation Sheet</b></p> <table border="1"> <tr> <td>Prepared:</td><td>H.R.</td><td>Page No.</td><td>C-03</td></tr> <tr> <td>Checked:</td><td>G.S.</td><td colspan="2"></td></tr> <tr> <td>Proj. #</td><td>25200</td><td colspan="2"></td></tr> <tr> <td>Date:</td><td>05-Sep-25</td><td colspan="2" rowspan="3"></td></tr> </table> <p><b>Guildwood</b></p> | Prepared:               | H.R.            | Page No.   | C-03          | Checked:                | G.S. |        |       | Proj. # | 25200  |      |       | Date: | 05-Sep-25       |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|------------|---------------|-------------------------|------|--------|-------|---------|--------|------|-------|-------|-----------------|------|-------|------|-----------------|-------|-------|------|-----------|-------------|--------------|-------------|--|------|-------|------|--|------|---------|------|--|------|---------|------|--|-------------|----------------|-------------|--|------|---------|------|--|-------|---------|------|--|--------------|----------------|-------------|--|-------|---------|------|--|-------|---------|------|--|-------|---------|------|--|-------|---------|------|--|-------|---------|------|--|-------|---------|------|--|-------|---------|------|--|-------|---------|------|--|-------|---------|------|--|--------------|----------------|-------------|--|
| Prepared:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H.R.                                                                                                                                                                                                                                                                                                                                                                                   | Page No.                | C-03            |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| Checked:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G.S.                                                                                                                                                                                                                                                                                                                                                                                   |                         |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| Proj. #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25200                                                                                                                                                                                                                                                                                                                                                                                  |                         |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 05-Sep-25                                                                                                                                                                                                                                                                                                                                                                              |                         |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| <b>Existing 300mm Watermain</b><br><b>Hydrant Test Results - LOCATION, Contractor, Date</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                        |                         |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| <table border="1"> <thead> <tr> <th>Flow (L/s)</th> <th>Flow (US GPM)</th> <th>Residual Pressure (PSI)</th> <th></th> </tr> </thead> <tbody> <tr> <td>0.0</td> <td>0</td> <td>60.0</td> <td>Static</td> </tr> <tr> <td>53.2</td> <td>844</td> <td>58.0</td> <td>Flow response 1</td> </tr> <tr> <td>79.8</td> <td>1266</td> <td>56.0</td> <td>Flow response 2</td> </tr> <tr> <td>276.7</td> <td>4386</td> <td>20.0</td> <td>Estimated</td> </tr> </tbody> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                        |                         |                 | Flow (L/s) | Flow (US GPM) | Residual Pressure (PSI) |      | 0.0    | 0     | 60.0    | Static | 53.2 | 844   | 58.0  | Flow response 1 | 79.8 | 1266  | 56.0 | Flow response 2 | 276.7 | 4386  | 20.0 | Estimated |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| Flow (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flow (US GPM)                                                                                                                                                                                                                                                                                                                                                                          | Residual Pressure (PSI) |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                      | 60.0                    | Static          |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 844                                                                                                                                                                                                                                                                                                                                                                                    | 58.0                    | Flow response 1 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 79.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1266                                                                                                                                                                                                                                                                                                                                                                                   | 56.0                    | Flow response 2 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 276.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4386                                                                                                                                                                                                                                                                                                                                                                                   | 20.0                    | Estimated       |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| <b>Fire Flow + Max Day Demand</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                        |                         |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| <table border="1"> <thead> <tr> <th>Flow (L/s)</th> <th>Flow (US GPM)</th> <th>Residual Pressure (PSI)</th> <th></th> </tr> </thead> <tbody> <tr> <td>119.60</td> <td>1,896</td> <td>51.5</td> <td></td> </tr> </tbody> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                        |                         |                 | Flow (L/s) | Flow (US GPM) | Residual Pressure (PSI) |      | 119.60 | 1,896 | 51.5    |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| Flow (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flow (US GPM)                                                                                                                                                                                                                                                                                                                                                                          | Residual Pressure (PSI) |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 119.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,896                                                                                                                                                                                                                                                                                                                                                                                  | 51.5                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| <b>Residual Pressure based on Best Fit Curve</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                        |                         |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| <table border="1"> <thead> <tr> <th>Flow (L/s)</th> <th>Flow (US GPM)</th> <th>Residual Pressure (psi)</th> <th></th> </tr> </thead> <tbody> <tr> <td>0.0</td> <td>0.0</td> <td>60.0</td> <td></td> </tr> <tr> <td>13.3</td> <td>211.0</td> <td>59.9</td> <td></td> </tr> <tr> <td>26.6</td> <td>422.0</td> <td>59.5</td> <td></td> </tr> <tr> <td>39.9</td> <td>633.0</td> <td>58.9</td> <td></td> </tr> <tr> <td><b>53.2</b></td> <td><b>844.0</b></td> <td><b>58.1</b></td> <td></td> </tr> <tr> <td>59.9</td> <td>949.4</td> <td>57.6</td> <td></td> </tr> <tr> <td>66.5</td> <td>1,054.8</td> <td>57.1</td> <td></td> </tr> <tr> <td>73.2</td> <td>1,160.2</td> <td>56.6</td> <td></td> </tr> <tr> <td><b>79.8</b></td> <td><b>1,265.6</b></td> <td><b>56.0</b></td> <td></td> </tr> <tr> <td>96.3</td> <td>1,525.6</td> <td>54.3</td> <td></td> </tr> <tr> <td>112.7</td> <td>1,785.7</td> <td>52.4</td> <td></td> </tr> <tr> <td><b>119.6</b></td> <td><b>1,895.7</b></td> <td><b>51.5</b></td> <td></td> </tr> <tr> <td>129.1</td> <td>2,045.7</td> <td>50.3</td> <td></td> </tr> <tr> <td>145.5</td> <td>2,305.7</td> <td>47.8</td> <td></td> </tr> <tr> <td>161.9</td> <td>2,565.8</td> <td>45.2</td> <td></td> </tr> <tr> <td>178.3</td> <td>2,825.8</td> <td>42.3</td> <td></td> </tr> <tr> <td>194.7</td> <td>3,085.8</td> <td>39.1</td> <td></td> </tr> <tr> <td>211.1</td> <td>3,345.9</td> <td>35.8</td> <td></td> </tr> <tr> <td>227.5</td> <td>3,605.9</td> <td>32.2</td> <td></td> </tr> <tr> <td>243.9</td> <td>3,865.9</td> <td>28.3</td> <td></td> </tr> <tr> <td>260.3</td> <td>4,126.0</td> <td>24.3</td> <td></td> </tr> <tr> <td><b>276.7</b></td> <td><b>4,386.0</b></td> <td><b>20.0</b></td> <td></td> </tr> </tbody> </table> |                                                                                                                                                                                                                                                                                                                                                                                        |                         |                 | Flow (L/s) | Flow (US GPM) | Residual Pressure (psi) |      | 0.0    | 0.0   | 60.0    |        | 13.3 | 211.0 | 59.9  |                 | 26.6 | 422.0 | 59.5 |                 | 39.9  | 633.0 | 58.9 |           | <b>53.2</b> | <b>844.0</b> | <b>58.1</b> |  | 59.9 | 949.4 | 57.6 |  | 66.5 | 1,054.8 | 57.1 |  | 73.2 | 1,160.2 | 56.6 |  | <b>79.8</b> | <b>1,265.6</b> | <b>56.0</b> |  | 96.3 | 1,525.6 | 54.3 |  | 112.7 | 1,785.7 | 52.4 |  | <b>119.6</b> | <b>1,895.7</b> | <b>51.5</b> |  | 129.1 | 2,045.7 | 50.3 |  | 145.5 | 2,305.7 | 47.8 |  | 161.9 | 2,565.8 | 45.2 |  | 178.3 | 2,825.8 | 42.3 |  | 194.7 | 3,085.8 | 39.1 |  | 211.1 | 3,345.9 | 35.8 |  | 227.5 | 3,605.9 | 32.2 |  | 243.9 | 3,865.9 | 28.3 |  | 260.3 | 4,126.0 | 24.3 |  | <b>276.7</b> | <b>4,386.0</b> | <b>20.0</b> |  |
| Flow (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flow (US GPM)                                                                                                                                                                                                                                                                                                                                                                          | Residual Pressure (psi) |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                    | 60.0                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 211.0                                                                                                                                                                                                                                                                                                                                                                                  | 59.9                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 422.0                                                                                                                                                                                                                                                                                                                                                                                  | 59.5                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 39.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 633.0                                                                                                                                                                                                                                                                                                                                                                                  | 58.9                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| <b>53.2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>844.0</b>                                                                                                                                                                                                                                                                                                                                                                           | <b>58.1</b>             |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 949.4                                                                                                                                                                                                                                                                                                                                                                                  | 57.6                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 66.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,054.8                                                                                                                                                                                                                                                                                                                                                                                | 57.1                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 73.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,160.2                                                                                                                                                                                                                                                                                                                                                                                | 56.6                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| <b>79.8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>1,265.6</b>                                                                                                                                                                                                                                                                                                                                                                         | <b>56.0</b>             |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 96.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,525.6                                                                                                                                                                                                                                                                                                                                                                                | 54.3                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 112.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,785.7                                                                                                                                                                                                                                                                                                                                                                                | 52.4                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| <b>119.6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1,895.7</b>                                                                                                                                                                                                                                                                                                                                                                         | <b>51.5</b>             |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 129.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,045.7                                                                                                                                                                                                                                                                                                                                                                                | 50.3                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 145.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,305.7                                                                                                                                                                                                                                                                                                                                                                                | 47.8                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,565.8                                                                                                                                                                                                                                                                                                                                                                                | 45.2                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 178.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,825.8                                                                                                                                                                                                                                                                                                                                                                                | 42.3                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 194.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,085.8                                                                                                                                                                                                                                                                                                                                                                                | 39.1                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 211.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,345.9                                                                                                                                                                                                                                                                                                                                                                                | 35.8                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 227.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,605.9                                                                                                                                                                                                                                                                                                                                                                                | 32.2                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 243.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,865.9                                                                                                                                                                                                                                                                                                                                                                                | 28.3                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| 260.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,126.0                                                                                                                                                                                                                                                                                                                                                                                | 24.3                    |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |
| <b>276.7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>4,386.0</b>                                                                                                                                                                                                                                                                                                                                                                         | <b>20.0</b>             |                 |            |               |                         |      |        |       |         |        |      |       |       |                 |      |       |      |                 |       |       |      |           |             |              |             |  |      |       |      |  |      |         |      |  |      |         |      |  |             |                |             |  |      |         |      |  |       |         |      |  |              |                |             |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |       |         |      |  |              |                |             |  |



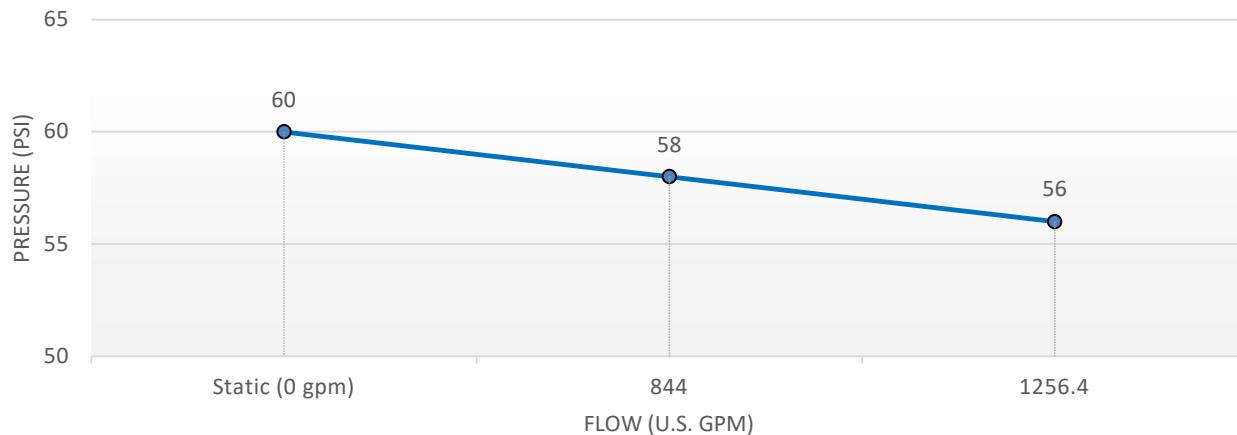


## HYDRANT FLOW TEST REPORT

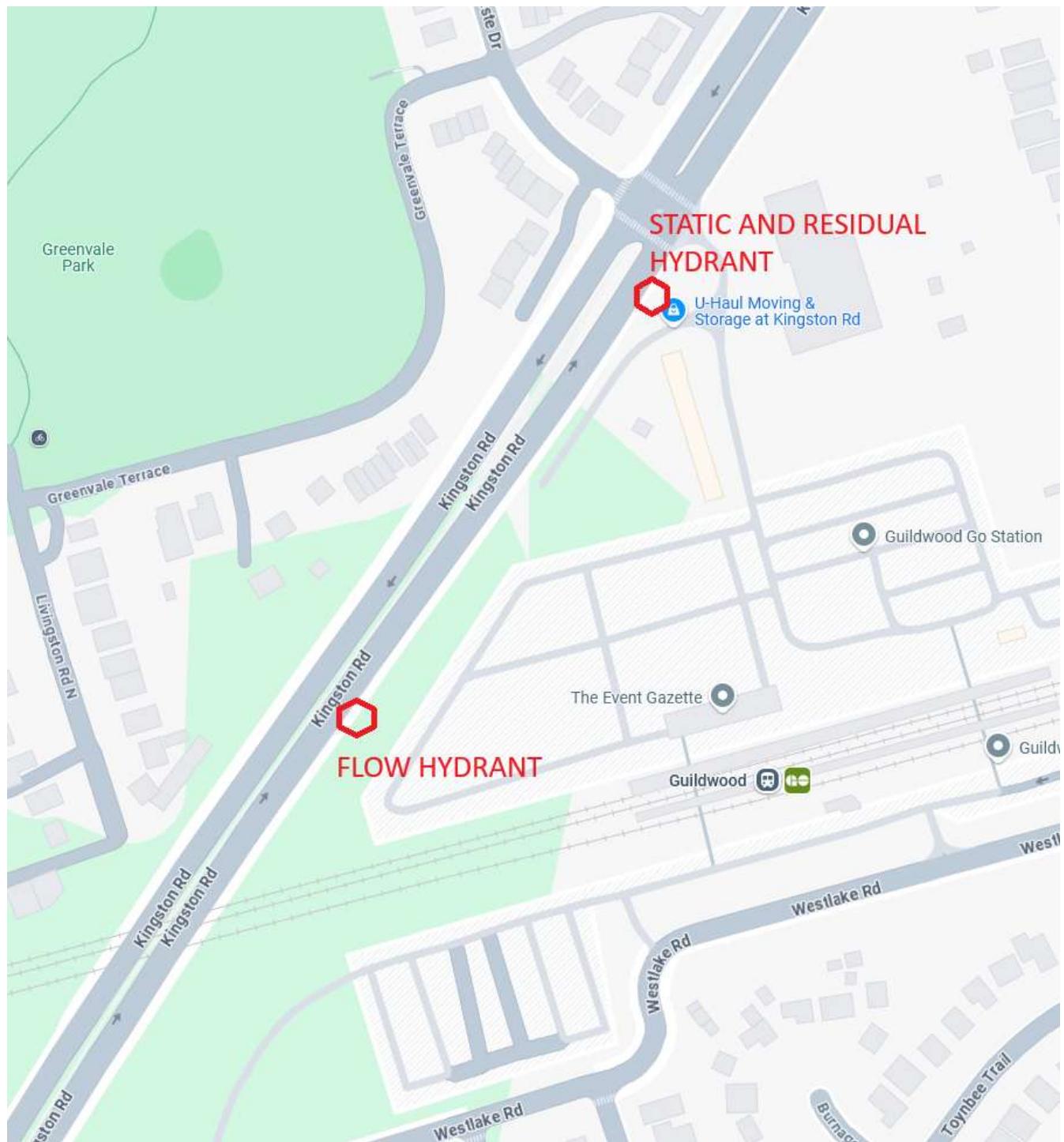
**TEST DATE:** April 15, 2025. **TIME:** 12:00 pm

**LOCATION:** 4095 Kingston Rd, Scarborough, ON M1E 2M3

**TESTED BY:** Artem Matthew – Bruce Fire Engineering


**TEST RESULTS:**

| STATIC PRESSURE (psi) |                | 60                     | DISCHARGE COEFFICIENT | RESIDUAL PRESSURE (psi) | PITOT PRESSURE (psi) | DISCHARGE (gpm) |
|-----------------------|----------------|------------------------|-----------------------|-------------------------|----------------------|-----------------|
| TEST NO.              | NO. OF NOZZLES | NOZZLE DIAMETER (inch) |                       |                         |                      |                 |
| 1                     | 1              | 2½"                    | 0.8                   | 58                      | 32                   | 844             |
| 2                     | 2              | 2½"                    | 0.8                   | 56                      | 18/18                | 1265.6          |


Flow test done as per NFPA 291 recommendations.

Calculated Flow 4386 gpm @ 20 psi

Flow Test Graph



## AREA MAP



# APPENDIX C

## SANITARY FLOW CALCULATIONS

|                                                                                                                                                               |                                                |       |          |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|----------|-----------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers and<br/>Planners</p> | <b>Existing Sanitary Flow Rate Calculation</b> |       |          |           |
|                                                                                                                                                               | Prepared:                                      | V.J.  | Page No. | C-01      |
| Checked:                                                                                                                                                      |                                                | G.S.  |          |           |
| Project: Guildwood                                                                                                                                            | Proj. #                                        | 25200 | Date:    | 30-Oct-25 |

Total site area 553 m<sup>2</sup>

#### POPULATION CALCULATION

| Proposed Land Use |                            | Density |                           | Population |
|-------------------|----------------------------|---------|---------------------------|------------|
| Type              | Units/GFA(m <sup>2</sup> ) |         |                           |            |
| Commercial        | 553                        | 1.1     | persons/100m <sup>2</sup> | 6          |
| <b>Total</b>      | <b>553.2</b>               |         |                           | <b>7</b>   |

#### SANITARY FLOW DEMAND CALCULATION (FOR SANITARY SERVICE SIZING)

Flow generated based on calculations using the harmon peaking factor and a per capita flow rate of 250L/cap/day.

Design flow used for the design of buildings service connection

Harmon Peaking Factor:  $M=1+14/(4+(P/1000)^{0.5})$

|                                            |                   |
|--------------------------------------------|-------------------|
| Peaking Factor                             | 4.43              |
| Average Daily Wastewater Flow (Commercial) | 250 L/cap/day     |
| Peak Domestic Flow (Commercial)            | <b>0.09 L/sec</b> |
| Infiltration Allowance (@ 0.26 L/sec/ha)   | <b>0.01 L/sec</b> |
| <b>Total Wastewater Flow</b>               | <b>0.10 L/sec</b> |

|                                                                                                                                                               |                                                |           |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers and<br/>Planners</p> | <b>Proposed Sanitary Flow Rate Calculation</b> |           |          |      |
|                                                                                                                                                               | Prepared:                                      | V.J.      | Page No. | C-02 |
|                                                                                                                                                               | Checked:                                       | G.S.      |          |      |
| Project: Guildwood                                                                                                                                            | Proj. #                                        | 25200     |          |      |
|                                                                                                                                                               | Date:                                          | 30-Oct-25 |          |      |

Total site area 29143.64 m<sup>2</sup>

#### POPULATION CALCULATION

| Proposed Land Use |                            | Density |                           | Population  |
|-------------------|----------------------------|---------|---------------------------|-------------|
| Type              | Units/GFA(m <sup>2</sup> ) |         |                           |             |
| 1-bed             | 692                        | 1.4     | persons/bed               | 969         |
| 1-bed + Den       | 786                        | 1.4     | persons/bed               | 1100        |
| 2-bed             | 184                        | 2.1     | persons/bed               | 386         |
| 2-bed + Den       | 540                        | 2.1     | persons/bed               | 1134        |
| 3-bed             | 332                        | 3.1     | persons/bed               | 1029        |
| <b>Total</b>      | <b>2534.0</b>              |         |                           | <b>4619</b> |
| Commercial/Retail | 1766                       | 1.1     | persons/100m <sup>2</sup> | 19          |
| <b>Total</b>      | <b>1766.0</b>              |         |                           | <b>20</b>   |

#### SANITARY FLOW DEMAND CALCULATION (FOR SANITARY SERVICE SIZING)

Flow generated based on calculations using the harmon peaking factor and a per capita flow rate of 240L/cap/day for residential and 250L/cap/day for commercial

Design flow used for the design of buildings service connection

Harmon Peaking Factor:  $M=1+14/(4+(P/1000)^{0.5})$

|                                                              |                        |
|--------------------------------------------------------------|------------------------|
| Peaking Factor (Residential)                                 | 3.28                   |
| Peaking Factor (Commercial)                                  | 4.38                   |
| Average Daily Wastewater Flow (Reseidential)                 | 240 L/cap/day          |
| Average Daily Wastewater Flow (Commercial)                   | 250 L/cap/day          |
| Peak Domestic Flow (Residential)                             | <b>42.04 L/sec</b>     |
| Peak Domestic Flow (Commercial)                              | <b>0.25 L/sec</b>      |
| Infiltration Allowance (@ 0.26 L/sec/ha)                     | <b>0.76 L/sec</b>      |
| <br>Design Flow                                              | <br><b>43.05 L/sec</b> |
| <br>Full Flow Capacity of the proposed 250mm PVC pipe @ 1.0% | <br>59.5 L/sec         |
| Full Flow velocity of the proposed 250mm PVC pipe @ 1.0%     | 1.21 m/s               |



# APPENDIX D

## STORM FLOW CALCULATIONS

|                                                                                                                                                               |                 |           |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>Land Use</b> |           |          |      |
|                                                                                                                                                               | Prepared:       | V.J.      | Page No. | D-01 |
|                                                                                                                                                               | Checked:        | G.S.      |          |      |
| <b>Project: Guildwood</b>                                                                                                                                     | Proj. #         | 25200     |          |      |
|                                                                                                                                                               | Date:           | 30-Oct-25 |          |      |

**EXISTING CONDITIONS:**

| <b>Land Use</b>         | <b>Area (m<sup>2</sup>)</b> | <b>%</b> |
|-------------------------|-----------------------------|----------|
| <b>Catchment EC1</b>    |                             |          |
| Paved Area              | 26348.2                     | 90.4%    |
| Landscape               | 2795.4                      | 9.6%     |
| <b>Total Site Area:</b> | <b>29143.6</b>              | 100.0%   |

**POST DEVELOPMENT CONDITION:**

| <b>Land Use</b>                   | <b>Area (m<sup>2</sup>)</b> | <b>%</b> |
|-----------------------------------|-----------------------------|----------|
| <b>Catchment PC1</b>              |                             |          |
| Paved Area                        | 24106.1                     | 82.7%    |
| Landscape                         | 4580.0                      | 15.7%    |
| Green Roofs                       | 0.0                         | 0.0%     |
| <b>Sub Total of Catchment PC1</b> | <b>28686.1</b>              | 98.4%    |

|                                                                                                                                                               |                                  |           |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>Composite "C" Calculation</b> |           |          |      |
|                                                                                                                                                               | Prepared:                        | V.J.      | Page No. | D-02 |
|                                                                                                                                                               | Checked:                         | G.S.      |          |      |
| <b>Project: Guildwood</b>                                                                                                                                     | Proj. #                          | 25200     |          |      |
|                                                                                                                                                               | Date:                            | 30-Oct-25 |          |      |

#### Pre-Development Composite Runoff Coefficient "C"

##### Catchment EC1

| Location                       | Area (ha)    | C            | Composite "C"                        |
|--------------------------------|--------------|--------------|--------------------------------------|
| Paved Area                     | 2.635        | 0.90         |                                      |
| Landscape                      | 0.280        | 0.25         |                                      |
| <b>Total</b>                   | <b>2.914</b> | <b>0.84</b>  |                                      |
|                                |              | <b>0.50</b>  | max. allowable by<br>City of Toronto |
| <b>Imperviousness Percent:</b> |              | <b>90.4%</b> |                                      |

#### Post-Development Composite Runoff Coefficient "C"

| Location                       | Area (ha)    | C            | Composite "C" |
|--------------------------------|--------------|--------------|---------------|
| <b>Catchment PC1</b>           |              |              |               |
| Paved Area                     | 2.411        | 0.90         |               |
| Landscape                      | 0.458        | 0.25         |               |
| Green Roofs                    | 0.000        | 0.25         |               |
| <b>Sub-Total</b>               | <b>2.869</b> | <b>0.80</b>  |               |
| <b>Imperviousness Percent:</b> |              | <b>84.0%</b> |               |

|                                                                                                                                                        |                           |          |           |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|-----------|------|
|  <p>LEA Consulting Ltd.<br/>Consulting Engineers and<br/>Planners</p> | Composite "C" Calculation |          |           |      |
|                                                                                                                                                        | Prepared:                 | V.J.     | Page No.  | D-03 |
| Project: Guildwood                                                                                                                                     |                           | Checked: | G.S.      |      |
|                                                                                                                                                        |                           | Proj. #  | 25200     |      |
|                                                                                                                                                        |                           | Date:    | 30-Oct-25 |      |

### Pre-Development Composite Runoff Coefficient "C"

#### Sub-catchment EC1

| Land Use          | Area (ha)    | C    | Composite "C" |
|-------------------|--------------|------|---------------|
| Paved Area        | 2.635        | 0.90 |               |
| Landscape         | 0.280        | 0.25 |               |
| <b>Total Area</b> | <b>2.914</b> |      | <b>0.84</b>   |
| <b>Total</b>      | <b>2.914</b> |      | <b>0.84</b>   |

**0.50** max. allowable by  
City of Toronto

|                                                                                                                                                               |                                  |           |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers and<br/>Planners</p> | <b>Composite "C" Calculation</b> |           |          |      |
|                                                                                                                                                               | Prepared:                        | V.J.      | Page No. | D-04 |
|                                                                                                                                                               | Checked:                         | G.S.      |          |      |
| <b>Project: Guildwood</b>                                                                                                                                     | Proj. #                          | 25200     |          |      |
|                                                                                                                                                               | Date:                            | 30-Oct-25 |          |      |

### Pre-Development Composite Runoff Coefficient "C"

#### Sub-catchment PC1

| Land Use            | Area (ha)    | C    | Composite "C" |
|---------------------|--------------|------|---------------|
| Paved Area/Building | 2.411        | 0.90 |               |
| Landscape           | 0.458        | 0.25 |               |
| Green Roof          | 0.000        | 0.25 |               |
| <b>Total Area</b>   | <b>2.87</b>  |      | <b>0.80</b>   |
| <b>Total</b>        | <b>2.869</b> |      | <b>0.80</b>   |



LEA Consulting Ltd.  
Consulting Engineers and Planners

Pre-Development Peak Flow Rates  
Calculation

|           |      |          |      |
|-----------|------|----------|------|
| Prepared: | V.J. | Page No. | D-05 |
|-----------|------|----------|------|

|          |      |  |  |
|----------|------|--|--|
| Checked: | G.S. |  |  |
|----------|------|--|--|

Project: Guildwood

|         |       |  |  |
|---------|-------|--|--|
| Proj. # | 25200 |  |  |
|---------|-------|--|--|

|       |           |      |  |
|-------|-----------|------|--|
| Date: | 30-Oct-25 | EC-1 |  |
|-------|-----------|------|--|

**Rational Formulae:**  $Q = 2.78 \text{ CIA} (\text{L/s})$

Site Area: 2.914 ha

Time of Concentration: 10 minutes as per WWFM Guidelines

Runoff Coefficient: 0.50 Max. allowable by city of Toronto

**Rainfall Intensity:  $I = aT^c$**  (City of Toronto Design Criteria for Sewers and Watermains)

| Return Period:              | 2-yr  | 5-yr   | 10-yr  | 25-yr  | 50-yr  | 100-yr |
|-----------------------------|-------|--------|--------|--------|--------|--------|
| Rainfall Intensity (mm/hr): | 88.19 | 131.79 | 162.27 | 189.52 | 224.32 | 250.32 |

**Peak Flow Rate (L/s):**

| Return Period:                        | 2-yr   | 5-yr   | 10-yr  | 25-yr  | 50-yr  | 100-yr  |
|---------------------------------------|--------|--------|--------|--------|--------|---------|
| Under existing site conditions (L/s): | 357.25 | 533.89 | 657.34 | 767.75 | 908.73 | 1014.04 |

**Allowable discharge rate into municipal storm sewer:**

@ 2-year storm

**357.25 L/s**

|                                                                                                                                                           |                                                                        |           |          |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers and Planners</p> | <b>Post-Development Peak Flow Rates<br/>Calculation (Uncontrolled)</b> |           |          |      |
|                                                                                                                                                           | Prepared:                                                              | V.J.      | Page No. | D-06 |
| <b>Project: Guildwood</b>                                                                                                                                 | Checked:                                                               | G.S.      |          |      |
|                                                                                                                                                           | Proj. #                                                                | 25200     | PC-1     |      |
|                                                                                                                                                           | Date:                                                                  | 30-Oct-25 |          |      |

**Rational Formulae:**  $Q = 2.78 \text{ CIA} (\text{L/s})$

Total Site Area: 2.869 ha  
 Runoff Coefficient: 0.80 Post-development  
 Time of Concentration: 10 minutes as per WWFM Guidelines

**Rainfall Intensity:  $I = aT^c$**  (City of Toronto Design Criteria for Sewers and Watermains)

| Return Period:              | 2-yr  | 5-yr   | 10-yr  | 25-yr  | 50-yr  | 100-yr |
|-----------------------------|-------|--------|--------|--------|--------|--------|
| Rainfall Intensity (mm/hr): | 88.19 | 131.79 | 162.27 | 189.52 | 224.32 | 250.32 |

**PC1 Peak Flow Rate (L/s):**

| Return Period:                           | 2-yr   | 5-yr   | 10-yr   | 25-yr   | 50-yr   | 100-yr  |
|------------------------------------------|--------|--------|---------|---------|---------|---------|
| Under post-development conditions (L/s): | 559.97 | 836.84 | 1030.35 | 1203.40 | 1424.38 | 1589.45 |

|                                                                                                                                                               |                                                             |           |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>On-Site Storage Calculation</b><br><b>(2-Year Storm)</b> |           |          |      |
|                                                                                                                                                               | Prepared:                                                   | V.J.      | Page No. | D-07 |
| Project: Guildwood                                                                                                                                            | Checked:                                                    | G.S.      |          |      |
|                                                                                                                                                               | Proj. #                                                     | 25200     |          |      |
|                                                                                                                                                               | Date:                                                       | 30-Oct-25 |          |      |

Total Drainage Area (ha) = 2.869 ha  
 Drainage Area Composite C = 0.80  
 Actual Release Rate = 357.25 L/s  
 Return Period = 2 Year

**Site storage Requirement:**

| Time<br>(minutes) | Rainfall<br>Intensity<br>(mm/hr) | Peak<br>Flow<br>(L/s) | Storm<br>Runoff<br>Volume<br>(m <sup>3</sup> ) | Release<br>Rate<br>(L/s) | Release<br>Flow<br>Volume<br>(m <sup>3</sup> ) | Required<br>Storage<br>Volume<br>(m <sup>3</sup> ) |
|-------------------|----------------------------------|-----------------------|------------------------------------------------|--------------------------|------------------------------------------------|----------------------------------------------------|
| 10                | 88.19                            | 559.97                | 335.98                                         | 357.25                   | 214.35                                         | 121.63                                             |
| 12                | 76.50                            | 485.74                | 349.73                                         | 357.25                   | 257.22                                         | 92.51                                              |
| 14                | 67.83                            | 430.71                | 361.80                                         | 357.25                   | 300.09                                         | 61.71                                              |
| 16                | 61.12                            | 388.11                | 372.58                                         | 357.25                   | 342.96                                         | 29.62                                              |
| 18                | 55.76                            | 354.04                | 382.36                                         | 357.25                   | 385.83                                         | -3.47                                              |
| 20                | 51.36                            | 326.11                | 391.33                                         | 357.25                   | 428.70                                         | -37.37                                             |
| 22                | 47.68                            | 302.74                | 399.62                                         | 357.25                   | 471.57                                         | -71.95                                             |
| 24                | 44.55                            | 282.88                | 407.35                                         | 357.25                   | 514.44                                         | -107.09                                            |
| 26                | 41.85                            | 265.76                | 414.58                                         | 357.25                   | 557.31                                         | -142.73                                            |
| 28                | 39.50                            | 250.83                | 421.40                                         | 357.25                   | 600.18                                         | -178.78                                            |
| 30                | 37.43                            | 237.69                | 427.84                                         | 357.25                   | 643.05                                         | -215.21                                            |
| 32                | 35.60                            | 226.02                | 433.96                                         | 357.25                   | 685.92                                         | -251.96                                            |

**2-Year Required Storage Volume = 121.63 m<sup>3</sup>**

|                                                                                                                                                               |                                                             |           |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>On-Site Storage Calculation</b><br><b>(2-Year Storm)</b> |           |          |      |
|                                                                                                                                                               | Prepared:                                                   | V.J.      | Page No. | D-08 |
| Project: Guildwood                                                                                                                                            | Checked:                                                    | G.S.      |          |      |
|                                                                                                                                                               | Proj. #                                                     | 25200     |          |      |
|                                                                                                                                                               | Date:                                                       | 30-Oct-25 |          |      |

Total Drainage Area (ha) = 2.869 ha  
 Drainage Area Composite C = 0.80  
 Actual Release Rate = 357.25 L/s  
 Return Period = 5 Year

**Site storage Requirement:**

| Time<br>(minutes) | Rainfall<br>Intensity<br>(mm/hr) | Peak<br>Flow<br>(L/s) | Storm<br>Runoff<br>Volume<br>(m <sup>3</sup> ) | Release<br>Rate<br>(L/s) | Release<br>Flow<br>Volume<br>(m <sup>3</sup> ) | Required<br>Storage<br>Volume<br>(m <sup>3</sup> ) |
|-------------------|----------------------------------|-----------------------|------------------------------------------------|--------------------------|------------------------------------------------|----------------------------------------------------|
| 10                | 131.79                           | 836.84                | 502.10                                         | 357.25                   | 214.35                                         | 287.75                                             |
| 12                | 114.11                           | 724.58                | 521.70                                         | 357.25                   | 257.22                                         | 264.48                                             |
| 14                | 101.03                           | 641.50                | 538.86                                         | 357.25                   | 300.09                                         | 238.77                                             |
| 16                | 90.91                            | 577.28                | 554.19                                         | 357.25                   | 342.96                                         | 211.23                                             |
| 18                | 82.84                            | 525.99                | 568.07                                         | 357.25                   | 385.83                                         | 182.24                                             |
| 20                | 76.22                            | 483.98                | 580.77                                         | 357.25                   | 428.70                                         | 152.07                                             |
| 22                | 70.69                            | 448.88                | 592.52                                         | 357.25                   | 471.57                                         | 120.95                                             |
| 24                | 66.00                            | 419.06                | 603.44                                         | 357.25                   | 514.44                                         | 89.00                                              |
| 26                | 61.95                            | 393.38                | 613.67                                         | 357.25                   | 557.31                                         | 56.36                                              |
| 28                | 58.43                            | 371.01                | 623.30                                         | 357.25                   | 600.18                                         | 23.12                                              |
| 30                | 55.33                            | 351.33                | 632.39                                         | 357.25                   | 643.05                                         | -10.66                                             |
| 32                | 52.58                            | 333.87                | 641.02                                         | 357.25                   | 685.92                                         | -44.90                                             |

**2-Year Required Storage Volume = 287.75 m<sup>3</sup>**

|                                                                                                                                                               |                                                              |           |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|----------|------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>On-Site Storage Calculation</b><br><b>(10-Year Storm)</b> |           |          |      |
|                                                                                                                                                               | Prepared:                                                    | V.J.      | Page No. | D-09 |
| <b>Project: Guildwood</b>                                                                                                                                     | Checked:                                                     | G.S.      |          |      |
|                                                                                                                                                               | Proj. #                                                      | 25200     |          |      |
|                                                                                                                                                               | Date:                                                        | 30-Oct-25 |          |      |

Total Drainage Area (ha) = 2.869      ha  
 Drainage Area Composite C = 0.80  
 Actual Release Rate = 357.25      L/s  
 Return Period = 10      Year

**Site storage Requirement:**

| Time<br>(minutes) | Rainfall<br>Intensity<br>(mm/hr) | Peak<br>Flow<br>(L/s) | Storm<br>Runoff<br>Volume<br>(m <sup>3</sup> ) | Release<br>Rate<br>(L/s) | Release<br>Flow<br>Volume<br>(m <sup>3</sup> ) | Required<br>Storage<br>Volume<br>(m <sup>3</sup> ) |
|-------------------|----------------------------------|-----------------------|------------------------------------------------|--------------------------|------------------------------------------------|----------------------------------------------------|
| 10                | 162.27                           | 1030.35               | 618.21                                         | 357.25                   | 214.35                                         | 403.86                                             |
| 12                | 140.24                           | 890.51                | 641.17                                         | 357.25                   | 257.22                                         | 383.95                                             |
| 14                | 123.97                           | 787.19                | 661.24                                         | 357.25                   | 300.09                                         | 361.15                                             |
| 16                | 111.41                           | 707.44                | 679.14                                         | 357.25                   | 342.96                                         | 336.18                                             |
| 18                | 101.39                           | 643.82                | 695.33                                         | 357.25                   | 385.83                                         | 309.50                                             |
| 20                | 93.20                            | 591.78                | 710.13                                         | 357.25                   | 428.70                                         | 281.43                                             |
| 22                | 86.36                            | 548.33                | 723.80                                         | 357.25                   | 471.57                                         | 252.23                                             |
| 24                | 80.55                            | 511.46                | 736.51                                         | 357.25                   | 514.44                                         | 222.07                                             |
| 26                | 75.55                            | 479.74                | 748.39                                         | 357.25                   | 557.31                                         | 191.08                                             |
| 28                | 71.20                            | 452.12                | 759.57                                         | 357.25                   | 600.18                                         | 159.39                                             |
| 30                | 67.38                            | 427.84                | 770.12                                         | 357.25                   | 643.05                                         | 127.07                                             |
| 32                | 63.99                            | 406.31                | 780.12                                         | 357.25                   | 685.92                                         | 94.20                                              |

**10-Year Required Storage Volume = 403.86 m<sup>3</sup>**

|                                                                                                                                                               |                                                              |           |          |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|----------|-------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>On-Site Storage Calculation</b><br><b>(10-Year Storm)</b> |           |          |       |
|                                                                                                                                                               | Prepared:                                                    | V.J.      | Page No. | D-010 |
| <b>Project: Guildwood</b>                                                                                                                                     | Checked:                                                     | G.S.      |          |       |
|                                                                                                                                                               | Proj. #                                                      | 25200     |          |       |
|                                                                                                                                                               | Date:                                                        | 30-Oct-25 |          |       |

Total Drainage Area (ha) = 2.869      ha  
 Drainage Area Composite C = 0.80  
 Actual Release Rate = 357.25      L/s  
 Return Period = 25      Year

**Site storage Requirement:**

| Time<br>(minutes) | Rainfall<br>Intensity<br>(mm/hr) | Peak<br>Flow<br>(L/s) | Storm<br>Runoff<br>Volume<br>(m <sup>3</sup> ) | Release<br>Rate<br>(L/s) | Release<br>Flow<br>Volume<br>(m <sup>3</sup> ) | Required<br>Storage<br>Volume<br>(m <sup>3</sup> ) |
|-------------------|----------------------------------|-----------------------|------------------------------------------------|--------------------------|------------------------------------------------|----------------------------------------------------|
| 10                | 189.52                           | 1203.40               | 722.04                                         | 357.25                   | 214.35                                         | 507.69                                             |
| 12                | 163.80                           | 1040.08               | 748.86                                         | 357.25                   | 257.22                                         | 491.64                                             |
| 14                | 144.80                           | 919.41                | 772.30                                         | 357.25                   | 300.09                                         | 472.21                                             |
| 16                | 130.13                           | 826.26                | 793.21                                         | 357.25                   | 342.96                                         | 450.25                                             |
| 18                | 118.42                           | 751.96                | 812.11                                         | 357.25                   | 385.83                                         | 426.28                                             |
| 20                | 108.85                           | 691.17                | 829.41                                         | 357.25                   | 428.70                                         | 400.71                                             |
| 22                | 100.86                           | 640.43                | 845.37                                         | 357.25                   | 471.57                                         | 373.80                                             |
| 24                | 94.08                            | 597.37                | 860.21                                         | 357.25                   | 514.44                                         | 345.77                                             |
| 26                | 88.24                            | 560.31                | 874.09                                         | 357.25                   | 557.31                                         | 316.78                                             |
| 28                | 83.16                            | 528.06                | 887.14                                         | 357.25                   | 600.18                                         | 286.96                                             |
| 30                | 78.70                            | 499.70                | 899.47                                         | 357.25                   | 643.05                                         | 256.42                                             |
| 32                | 74.74                            | 474.56                | 911.15                                         | 357.25                   | 685.92                                         | 225.23                                             |

**10-Year Required Storage Volume = 507.69 m<sup>3</sup>**

|                                                                                                                                                               |                                                              |           |          |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|----------|-------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>On-Site Storage Calculation</b><br><b>(50-Year Storm)</b> |           |          |       |
|                                                                                                                                                               | Prepared:                                                    | V.J.      | Page No. | D-011 |
| <b>Project: Guildwood</b>                                                                                                                                     | Checked:                                                     | G.S.      |          |       |
|                                                                                                                                                               | Proj. #                                                      | 25200     |          |       |
|                                                                                                                                                               | Date:                                                        | 30-Oct-25 |          |       |

Total Drainage Area (ha) = 2.869 ha  
 Drainage Area Composite C = 0.80  
 Actual Release Rate = 357.25 L/s  
 Return Period = 50 Year

**Site storage Requirement:**

| Time<br>(minutes) | Rainfall<br>Intensity<br>(mm/hr) | Peak<br>Flow<br>(L/s) | Storm<br>Runoff<br>Volume<br>(m <sup>3</sup> ) | Release<br>Rate<br>(L/s) | Release<br>Flow<br>Volume<br>(m <sup>3</sup> ) | Required<br>Storage<br>Volume<br>(m <sup>3</sup> ) |
|-------------------|----------------------------------|-----------------------|------------------------------------------------|--------------------------|------------------------------------------------|----------------------------------------------------|
| 10                | 224.32                           | 1424.38               | 854.63                                         | 357.25                   | 214.35                                         | 640.28                                             |
| 12                | 193.88                           | 1231.06               | 886.37                                         | 357.25                   | 257.22                                         | 629.15                                             |
| 14                | 171.38                           | 1088.24               | 914.12                                         | 357.25                   | 300.09                                         | 614.03                                             |
| 16                | 154.02                           | 977.98                | 938.86                                         | 357.25                   | 342.96                                         | 595.90                                             |
| 18                | 140.17                           | 890.04                | 961.24                                         | 357.25                   | 385.83                                         | 575.41                                             |
| 20                | 128.84                           | 818.09                | 981.71                                         | 357.25                   | 428.70                                         | 553.01                                             |
| 22                | 119.38                           | 758.03                | 1000.60                                        | 357.25                   | 471.57                                         | 529.03                                             |
| 24                | 111.35                           | 707.06                | 1018.17                                        | 357.25                   | 514.44                                         | 503.73                                             |
| 26                | 104.45                           | 663.20                | 1034.60                                        | 357.25                   | 557.31                                         | 477.29                                             |
| 28                | 98.43                            | 625.03                | 1050.05                                        | 357.25                   | 600.18                                         | 449.87                                             |
| 30                | 93.15                            | 591.46                | 1064.64                                        | 357.25                   | 643.05                                         | 421.59                                             |
| 32                | 88.46                            | 561.70                | 1078.47                                        | 357.25                   | 685.92                                         | 392.55                                             |

**50-Year Required Storage Volume = 640.28 m<sup>3</sup>**

|                                                                                                                                                               |                                                                 |           |          |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------|----------|-------|
|  <p><b>LEA Consulting Ltd.</b><br/>Consulting Engineers<br/>and Planners</p> | <b>On-Site Storage Calculation</b><br><b>(100 - Year Storm)</b> |           |          |       |
|                                                                                                                                                               | Prepared:                                                       | V.J.      | Page No. | D-012 |
| Project: Guildwood                                                                                                                                            | Checked:                                                        | G.S.      |          |       |
|                                                                                                                                                               | Proj. #                                                         | 25200     |          |       |
|                                                                                                                                                               | Date:                                                           | 30-Oct-25 |          |       |

Total Drainage Area (ha) = 2.869 ha  
 Drainage Area Composite C = 0.80  
 Actual Release Rate = 357.25 L/s  
 Return Period = 100 Year

**Site storage Requirement:**

| Time<br>(minutes) | Rainfall<br>Intensity<br>(mm/hr) | Peak<br>Flow<br>(L/s) | Storm<br>Runoff<br>Volume<br>(m <sup>3</sup> ) | Release<br>Rate<br>(L/s) | Release<br>Flow<br>Volume<br>(m <sup>3</sup> ) | Required<br>Storage<br>Volume<br>(m <sup>3</sup> ) |
|-------------------|----------------------------------|-----------------------|------------------------------------------------|--------------------------|------------------------------------------------|----------------------------------------------------|
| 10                | 250.32                           | 1589.45               | 953.67                                         | 357.25                   | 214.35                                         | 739.32                                             |
| 12                | 216.35                           | 1373.73               | 989.09                                         | 357.25                   | 257.22                                         | 731.87                                             |
| 14                | 191.25                           | 1214.35               | 1020.05                                        | 357.25                   | 300.09                                         | 719.96                                             |
| 16                | 171.87                           | 1091.32               | 1047.66                                        | 357.25                   | 342.96                                         | 704.70                                             |
| 18                | 156.41                           | 993.18                | 1072.63                                        | 357.25                   | 385.83                                         | 686.80                                             |
| 20                | 143.77                           | 912.90                | 1095.48                                        | 357.25                   | 428.70                                         | 666.78                                             |
| 22                | 133.22                           | 845.88                | 1116.56                                        | 357.25                   | 471.57                                         | 644.99                                             |
| 24                | 124.26                           | 789.00                | 1136.16                                        | 357.25                   | 514.44                                         | 621.72                                             |
| 26                | 116.55                           | 740.06                | 1154.50                                        | 357.25                   | 557.31                                         | 597.19                                             |
| 28                | 109.84                           | 697.46                | 1171.73                                        | 357.25                   | 600.18                                         | 571.55                                             |
| 30                | 103.94                           | 660.01                | 1188.01                                        | 357.25                   | 643.05                                         | 544.96                                             |
| 32                | 98.71                            | 626.80                | 1203.45                                        | 357.25                   | 685.92                                         | 517.53                                             |

**100-Year Required Storage Volume = 739.32 m<sup>3</sup>**